1) Rotate \triangle BAT where F(-5,3), O(-1,4), and R(-2,2) 180° clockwise about the origin.

B(___,__) B'(___,_ A(__,__) A'(___,_ T(__,_) T'(__,

Describe how you did the rotation:

Describe what happened to the coordinates of each point:

2) Rotate \triangle GST G(1,2), S(3,0), AND T(4,4) 180° counterclockwise about the origin.

G (___,___) G'(__ S (___,___) S'(__ T (__,___) T'(__

Describe how you did the rotation:

Describe what happened to the coordinates of each point:

When you rotate a shape 180°, does it matter if you go clockwise or counterclockwise?

Write a rule for what happens when you rotate a shape 180° about the origin.

3) Rotate \triangle GHL, where G(2,1), H(0,3), and L(5,4), 90° clockwise about the origin.

G(_	 _)
H(
T /	$\overline{}$

Describe how you did the rotation:

Describe what happened to the coordinates of each point:

4) Rotate Δ WCH, where W(-3,-1), C(-4,-3), and H(-1,-3), 90° counterclockwise about the origin.

W(___,___)
C(___,___)
H(___)

W'(__,__) C'(__,__) H'(__,__)

Describe how you did the rotation:

Describe what happened to the coordinates of each point:

4) Rotate \triangle WCH, where W(-3,-1), C(-4,-3), and H(-1,-3), 270° clockwise about the origin.

W(___,__) C(___,__) H(___) W'(__,__)
C'(__,__)
H'(__,__)

Describe how you did the rotation:

How does this relate to rotating Δ WCH 90° counterclockwise about the origin?

5) Rotate \triangle CAT, where C(2,0), A(4,2), and T(1,3), 180° clockwise about the point (-1,-1).

C(___,__)
A(___,__)

C'(___,___) A'(___,___) T'(___,___)

Describe how you did the rotation:

How is this different from rotating 180° about the origin?

6) Rotate \triangle BR,, where B(-3,-1), R(-1,1), and M(-2,3), 90° clockwise about the point (2,1).

B(___,__)
R(___,__)
M(___,__)

B'(__,__) R'(__,__) M'(__,__)

Describe how you did the rotation:

How is this different from rotating about the origin?

Use the following space to describe how to do a rotation about a point:

What stays the same when you do a rotation?

Does the distance the from the center of rotation change during a rotation?

Homework Due 11/03

1) \triangle RST: R(2, -1), S(4, 0), and T(1, 3) 90° counter clockwise about the origin.

3) Δ TRL: T(2, -1), R(4, 0), and L(1, 3) 90° clockwise about the point (3,-2)

3) \triangle SCR: S(-3,1), C(-1,3), and R(-1,-1) 90° clockwise abouth point (1,-2)

Rotate each triangle as indicated by each problem.

2) ΔFUN: F(-4, -1), U(-1, 3), and N(-1, 1)180° clockwise about the origin.

2) ACDY: C(-4,2), D(-1, 2), and Y(-1, -1) 180° counter clockwise about the point (1, 1)

2) Δ SCR: S(-3,1), C(-1,3), and R(-1,-1) 90° counter clockwise about the point (1,-2)

