Rigor: Illustrations of Conceptual Understanding, Fluency, and Application

Professional Development on the Instructional Shift of Rigor

Mathematical Shift 3:

What is Rigor?

Identify the three components of rigor
Describe the three components in your own words.

Group Discussion

Oshift #3: Rigor: Expect fluency, deep understanding, and application

In your groups, discuss ways to respond to one of the following comments: "These standards expect that we just teach rote memorization. Seems like a step backwards to me." Or "I'm not going to spend time on fluency—it should just be a natural outcome of conceptual understanding."

Solid Conceptual Understanding

Teach more than "how to get the answer" and instead support students' ability to access concepts from a number of perspectives

Students are able to see math as more than a set of mnemonics or discrete procedures

Conceptual understanding supports the other aspects of rigor (fluency and application)

Procedural Skill and Fluency

- The standards require speed and accuracy in calculation.
- Teachers structure class time and/or homework time for students to practice core functions such as single-digit multiplication so that they are more able to understand and manipulate more complex concepts

Required Fluencies in K-6

Grade	Standard	Required Fluency
К	K.OA.5	Add/subtract within 5
1	1.OA.6	Add/subtract within 10
2	2.OA.2 2.NBT.5	Add/subtract within 20 (know single-digit sums from memory) Add/subtract within 100
3	3.OA.7 3.NBT.2	Multiply/divide within 100 (know single-digit products from memory) Add/subtract within 1000
4	4.NBT.4	Add/subtract within 1,000,000
5	5.NBT.5	Multi-digit multiplication
6	6.NS.2,3	Multi-digit division Multi-digit decimal operations

Procedural VS. Conceptual

Procedural involves working out a procedure, but the students may not understand the reasoning behind procedure. Conceptual knowledge is understanding the concepts in order to solve problems (so students may use any procedure). A great example is with fractions. Many students can solve fraction problems for a test because they memorize a procedure only to forget two weeks later. Thus, the students have not mastered the conceptual understanding."

Application

- Students can use appropriate concepts and procedures for application even when not prompted to do so.
- Teachers provide, and HS. opportunities at all grade levels for students to apply math concepts in "real world" situations, recognizing this means different things in K-5, 6-8
- Teachers in content areas outside of math, particularly science, ensure that students are using grade-level-appropriate math to make meaning of and access science content.

Rigor Card Sort Sample Problems¹

- 1. Sort problems into one of the three categories of Rigor. Be able to justify your reasoning.
- 2. Consider the following questions:
- What is something that you observed from one of the problems you've tried?
- How can assessing (through tests, HW problems, exit tickets) all 3 aspects of rigor affect student learning?
- What does it look like when we ask students to work on procedural skill and fluency, conceptual understanding or application?

Action Plan

How does rigor apply to the Depths of Knowledge?

Review Mathematical Practices

- Determine which practices apply to which aspect of rigor: Conceptual, Procedural/Fluency, and application
- What do those practices look like in your classroom?

Teacher Resources

Rigor Deep Drive

Revised Blooms Taxonomy Posters

Standards of Mathematical Practices Progression

