Report for Experiment 40

Energy Value of Nuts

Prelaboratory Questions

- 1. Paraffin wax has the chemical formula $C_{25}H_{52}$. Write the balanced equation for the combustion of paraffin with air.
- 2. How much energy is required to warm 100g of H_2O from 20°C to 80°C if it is in a 140g glass flask (the specific heat of water is $4.18J/g^{\circ}C$; the specific heat of glass is $0.836J/g^{\circ}C$)

 $O = mC\Delta tT$

Q = energy

m = mass (in grams)

C = specific heat

 ΔT = change in temperature

3. Predict which of these three nuts – peanuts, cashews, almonds – will furnish the greatest amount of energy per gram. Explain briefly your hypothesis.

Observation and Data

Sample 1	Sample 2	Sample 3
	Sample 1	Sample 1 Sample 2

Analysis and Conclusions

Show all work

Show a sample calculation for each of the questions 1-5, and then record your results in the Summary Table after the questions.

- 1. Determine the change in mass of the nut before and after combustion.
- 2. Determine the change in temperature of the water (and, therefore, also of the beaker) before and after combustion.
- 3. Determine the heat absorbed by the water, using the equation $Q = mC\Delta T$. (the specific heat, C, for water is 4.18 J/g°C).

- 4. Determine the heat absorbed by the beaker or flask. (The specific heat for glass is 0.836 J/g°C).
- 5. Determine the total heat absorbed by the water and the beaker. Note: This is also equal to the heat released by the nut.
- 6. Determine the total heat released per gram of nut (divide the total heat absorbed by the mass of the combusted nut)

Summary Table

Summary rank					
	Sample 1	Sample 2	Sample 3		
type of nut					
mass of combusted nut					
change in T					
heat absorbed by the water					
heat absorbed by the beaker					
total heat absorbed					
total heat released per gram of nut					