Warm Up 7th grade

Solve.

$$1.72 + 18 + x = 180$$

$$2.80 + 70 + x = 180$$

$$3. x + 42 + 90 = 180$$

$$4.120 + x + 32 = 180$$

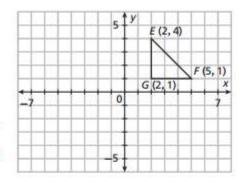
$$x = 90$$

$$x = 30$$

$$x = 48$$

$$x = 28$$

Warm UP 8th grade Workbook Pg. 30 Explore #2


my.hrw.com/math14/ga/msm/student/osp/g8/data/unit01/mod02/lesson01/exploration_core_lesson.pdf

The triangle is the preimage. You will use the x- or

y-axis as the line of reflection.

Reflection across the x-axis:

- A Trace the triangle and the x- and y-axes on a piece of paper. Fold your paper along the x-axis and trace the image of the triangle on the opposite side of the x-axis.
- B Sketch the image of the reflection. Label each vertex of the image. (The image of point E is point E'.)

Complete the table.

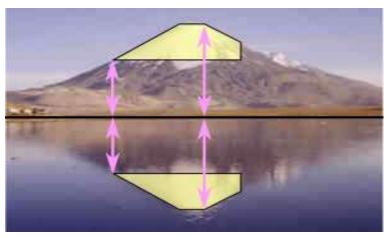
Preimage	(2, 4)	(2, 1)	(5, 1)
Image			

- D How does reflecting the figure across the x-axis change the x-coordinates? How does it change the y-coordinates?
- Complete the ordered pair to write a general rule for reflection across the x-axis. $(x, y) \rightarrow (x, y \times x)$

Reflection across the y-axis:

- Fold your traced image along the y-axis and trace the image of the triangle on the opposite side of the y-axis.
- G Sketch the image of the reflection. Label each vertex of the image. (For clarity, label the image of point E as point E''.)
- H Complete the table.

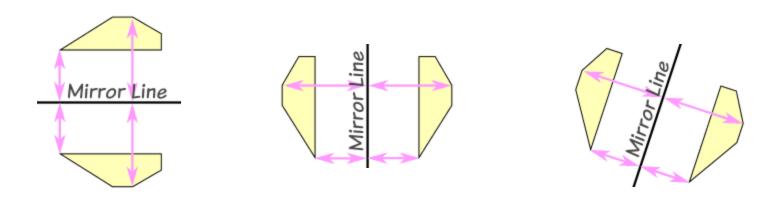
Preimage (2, 4) (2, 1) (5, 1)


Geometric Reflections

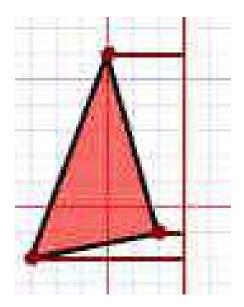
Introduction Video

Reflection

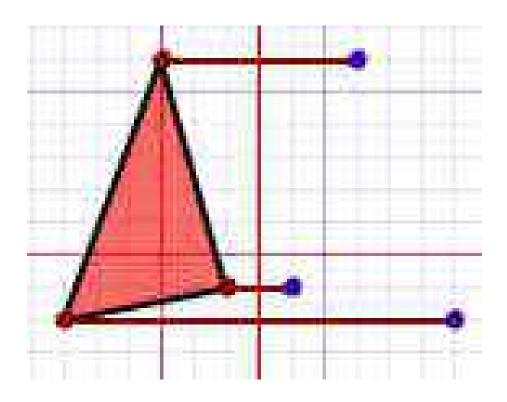
 Reflections are everywhere ... in mirrors, glass, and here in a lake.



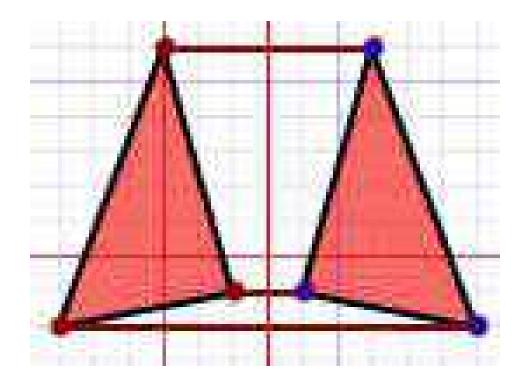
. what do you notice? Every point is the same distance from the central line! ... and ... The reflection has the same size as the original image


A reflection is a flip over a line.

• The central line is called the **Mirror Line** ... and it doesn't matter what direction the mirror line goes, the **reflected image** is always the same size, it just **faces the other way**:

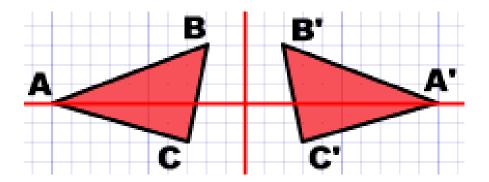

Step 1

 1. Measure from the point to the mirror line (must hit the mirror line at a <u>right angle</u>)

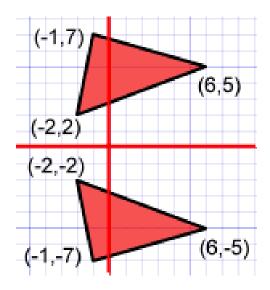

Step 2

• 2. Measure the same distance again on the other side and place a dot.

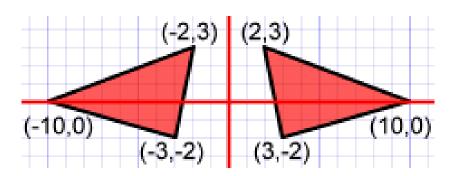
Step 3

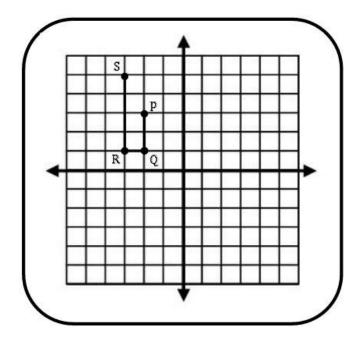

• 3. Then connect the new dots up!

Labels


It is common to label each corner with letters, and to use a little dash (called a **Prime**) to mark each corner of the reflected image.

 Here the <u>original</u> is **ABC** and the reflected <u>image</u> is **A'B'C'**


Tips


- X-Axis
- If the mirror line is the x-axis, just change each (x,y) into (x,-y)

Y-Axis

 If the mirror line is the y-axis, just change each (x,y) into (-x,y)

$$PQRS \rightarrow P'Q'R'S'$$

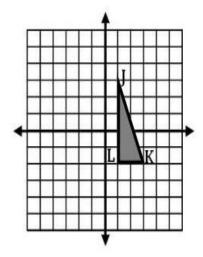
$$P() \rightarrow P'()$$

$$Q() \rightarrow Q'()$$

$$R() \rightarrow R'()$$

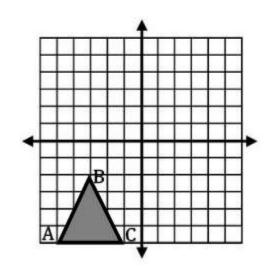
$$S() \rightarrow S'()$$

$$PQRS \rightarrow P''Q''R''S''$$


$$P() \rightarrow P''()$$

$$Q() \rightarrow Q''()$$

$$R() \rightarrow R''()$$


$$S() \rightarrow S''()$$

	x-axis	y-axis	Both at once!
(x,y)			

Reflect across the x-axis

Reflect across the y-axis