FACTORS, ROOTS, AND ZEROES

Solving a Polynomial Equation

Rearrange the terms to have zero on one side: $x^2 + 2x = 15 \implies x^2 + 2x - 15 = 0$ Factor:

Set each factor equal to zero and solve:

The only way that $x^2 + 2x - 15$ can = 0 is if x = -5 or x = 3

Zeros of a Polynomial Function

A <u>Polynomial Function</u> is usually written in function notation or in terms of *x* and *y*.

$$f(x) = x^{2} + 2x - 15$$
 or $y = x^{2} + 2x - 15$

The <u>Zeros</u> of a *Polynomial Function* are the *solutions* to the equation you get when you set the polynomial equal to zero.

Graph of a Polynomial Function

The <u>Zeros</u> of the Polynomial are the values of x when the polynomial equals zero. In other words, the <u>Zeros</u> are the x-values where <u>y equals zero</u>.

x-Intercepts of a Polynomial

Factors, Roots, Zeros

For our *Polynomial Function*: $y = x^2 + 2x - 15$

The <u>Factors</u> are:(x + 5) & (x - 3)The <u>Roots/Solutions</u> are:x = -5 and 3The <u>Zeros</u> are at:(-5, 0) and (3, 0)

Factor the following. . . .(Hint: use factoring by grouping.) $x^3 - 12x^2 - 4x + 24 = 0$

This equation factors to:
$$(x - 2)(x + 2)(x - 12) = 0$$

The roots therefore are: -2, 2, 12

Take a closer look at the original equation and our roots:

$$x^3 - 5x^2 - 2x + 24 = 0$$

The roots therefore are: -2, 2, 12 What do you notice?

-2, 2, and 12 all go into the last term, 24!

This leads us to the Rational Root Theorem

$$Y = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$$

- For a polynomial,
- If p/q is a root of the polynomial,
- then p is a factor of an
- and q is a factor of a_0

Example (RRT)

1. For polynomial	$x^3 + x^2 - 3x - 3 = 0$	Here $p = -3$ and $q = 1$
Possible roots are	$\frac{\text{Factors of -3}}{\text{Factors of 1}} \rightarrow$	<u>±3, ±1</u> ±1 Or 3,-3, 1, -1

2. For polynomial $3x^3 + 9x^2 + 4x + 12 = 0$ Here p = 12 and q = 3

Possible roots are
$$\frac{\begin{array}{c} Factors \ of \ 12 \\ Factors \ of \ 3 \end{array}}{} \rightarrow \frac{\pm 12, \ \pm 6, \ \pm 3, \ \pm 2, \ \pm 1 \ \pm 4}{\pm 1, \ \pm 3}$$

Wait a second . . . Where did all of these come from???

Let's look at our solutions

$\frac{\pm 12, \pm 6, \pm 3, \pm 2, \pm 1, \pm 4}{\pm 1, \pm 3}$

Note that ± 2 is listed twice; we only consider it as one answer

Note that <u>+</u> 1 is listed twice; we only consider it as one answer

Note that ± 4 is listed twice; we only consider it as one answer

That is where our 9 possible answers come from!

Let's Try One

Find the POSSIBLE roots of $x^3 - 5x^2 - 4x + 20=0$

Identify $q = \pm 1$

Identify all possible combinations of p/q = $\pm 20, \pm 10, \pm 5, \pm 4, \pm 2, \pm 1$

That's a lot of answers!

- Obviously $x^3 5x^2 4x + 20=0$ does not have all of those roots as answers.
- Remember: these are only **POSSIBLE** roots. We take these roots and figure out what answers actually WORK.

Steps for solving polynomial equations.

- 1. Develop your possible roots using p/q
- 2. Use synthetic division with your possible roots to find an actual root. If you started with a 4th degree, that makes the dividend a cubic polynomial.
- 3. Continue the synthetic division trial process with the resulting cubic. Don't forget that roots can be used more than once.
- 4. Once you get to a quadratic, use factoring techniques or the quadratic formula to get to the other two roots.

Let's Try One

Find the roots of $2x^3 - x^2 + 2x - 1$

Take this in parts. First find the possible roots. Then determine which root actually works.

Find p and q

- p = -6
- q = 1

By RRT, the only rational root is of the form...

Factors of p
Factors of q

Factors

• Factors of $-6 = \pm 1, \pm 2, \pm 3,$ ± 6 Factors of $1 = \pm 1$ Possible roots

-6, 6, -3, 3, -2, 2, 1, and -1

Test each root

Х	$x^3 - 5x^2 + 8x - 6$
-6	-450
6	78
3	⁰ THIS IS YOUR ROOT
-3	-102
2	-2
-2	-50
1	-2
-1	-20

Synthetic division

Rewrite

• $x^3 - 5x^2 + 8x - 6$ = $(x - 3)(x^2 - 2x + 2)$ Factor more and solve • $(x - 3)(x^2 - 2x + 2)$ ↓ ↓ X= 3 Quadratic Formula $x = 1 \pm i$

Roots are 3, 1 ± i

Find each of the roots, classify them and show the factors.

Example: $x^3 - 5x^2 - 4x + 20$

 $p/q = \pm 20, \pm 10, \pm 5, \pm 4, \pm 2, \pm 1$

$$x^{2} - 3x - 10$$

(x - 5)(x + 3)
(x - 2)(x - 5)(x + 3)

Roots are x = 2 (Rational), x=5 (Rational), x= -3 (Rational)