AP Calculus AB

Quiz 6.2

1.	t	1	5	8	13
	$R\left(t ight)$	1	10	17	32

The differentiable function R is increasing, and the graph of R is concave down. Values of R(t) at selected values of t are given in the table above. The trapezoidal sum $(5-1)\left(\frac{10+1}{2}\right)+(8-5)\left(\frac{17+10}{2}\right)+(13-8)\left(\frac{17+32}{2}\right)$ approximates $\int_1^{13} R(t) \, dt$. Which of the following statements is true?

- (A) The trapezoidal sum is an underestimate for $\int_1^{13} R(t) \, dt$ because R is increasing.
- (B) The trapezoidal sum is an overestimate for $\int_{1}^{13} R(t) \, \Box t$ because R is increasing.
- \bigcirc The trapezoidal sum is an underestimate for $\int_{1}^{13} R(t) \, \Box t$ because the graph of R is concave down.
- $igcup_{\mathbf{D}}$ The trapezoidal sum is an overestimate for $\int_{1}^{13} R(t) \, \Box t$ because the graph of R is concave down.
- 2. Which of the following is the midpoint Riemann sum approximation of $\int_4^6 \sqrt{x^3 + 1} \Box x$ using 4 subintervals of equal width?

$$\qquad \qquad \mathbb{B} \quad \frac{1}{2} \Big(\sqrt{4.25^3 + 1} + \sqrt{4.75^3 + 1} + \sqrt{5.25^3 + 1} + \sqrt{5.75^3 + 1} \Big)$$

$$\bigcirc \frac{1}{4} \left(\frac{\sqrt{4^3+1}+\sqrt{4.5^3+1}}{2} + \frac{\sqrt{4.5^3+1}+\sqrt{5^3+1}}{2} + \frac{\sqrt{5^3+1}+\sqrt{5.5^3+1}}{2} + \frac{\sqrt{5.5^3+1}+\sqrt{6^3+1}}{2} \right)$$

$$\begin{array}{c} \boxed{ \textbf{D}} \ \ \frac{1}{2} \Bigg(\frac{\sqrt{4^3+1}+\sqrt{4.5^3+1}}{2} + \frac{\sqrt{4.5^3+1}+\sqrt{5^3+1}}{2} + \frac{\sqrt{5^3+1}+\sqrt{5.5^3+1}}{2} + \frac{\sqrt{5.5^3+1}+\sqrt{6^3+1}}{2} \Bigg) \end{array}$$

AP Calculus AB Test Booklet

Quiz 6.2

3.	\boldsymbol{x}	0	a^2	3a	6 <i>a</i>	7a
	f(x)	1	-1	-3	-7	-9

The continuous function f is decreasing for all x. Selected values of f are given in the table above, where a is a constant with 0 < a < 3. Let R be the right Riemann sum approximation for $\int_0^{7a} f(x) \, dx$ using the four subintervals indicated by the data in the table. Which of the following statements is true?

$$R = \left(a^2 - 0\right) \cdot 1 + \left(3a - a^2\right) \cdot \left(-1\right) + \left(6a - 3a\right) \cdot \left(-3\right) + \left(7a - 6a\right) \cdot \left(-7\right) \quad \text{and} \quad \text{is} \quad \text{an}$$
 underestimate for $\int_0^{7a} f(x) \, \Box x$.

$$R = \left(a^2 - 0\right) \cdot 1 + \left(3a - a^2\right) \cdot (-1) + (6a - 3a) \cdot (-3) + (7a - 6a) \cdot (-7) \quad \text{and} \quad \text{is} \quad \text{an}$$

$$\text{overestimate for } \int_0^{7a} f(x) \, \Box x.$$

$$R = \left(a^2 - 0\right) \cdot (-1) + \left(3a - a^2\right) \cdot (-3) + \left(6a - 3a\right) \cdot (-7) + \left(7a - 6a\right) \cdot (-9) \text{ and is an underestimate for } \int_0^{7a} f(x) \, \Box x.$$

$$R = (a^2 - 0) \cdot (-1) + (3a - a^2) \cdot (-3) + (6a - 3a) \cdot (-7) + (7a - 6a) \cdot (-9) \text{ and is an overestimate for } \int_0^{7a} f(x) \, \Box x.$$