Quadratic models

Warm Up Solve each system of equations.

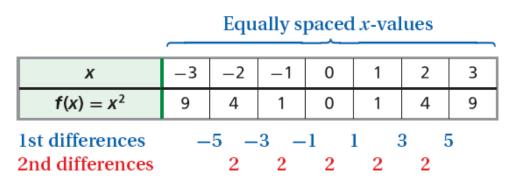
1.
$$\begin{cases} 3a + b = -5 \\ 2a - 6b = 30 \end{cases}$$

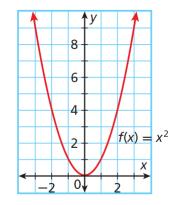
2.
$$\begin{cases} 9a + 3b = 24 \\ a + b = 6 \end{cases}$$

3.
$$\begin{cases} 4a - 2b = 8 \\ 2a - 5b = 16 \end{cases}$$

$$a = 0, b = -5 \\ a = 1, b = 5 \end{cases}$$

$$a = \frac{1}{2}, b = -3 \end{cases}$$

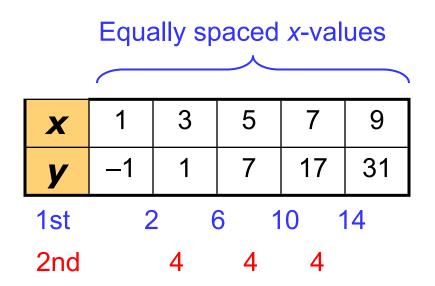

Use quadratic functions to model data. Use quadratic models to analyze and predict.


quadratic model

quadratic regression

Recall that you can use differences to analyze patterns in data. For a set of ordered parts with equally spaced *x*-values, a quadratic function has constant nonzero second differences, as shown below.

Constant 2nd differences



Example 1A: Identifying Quadratic Data

Determine whether the data set could represent a quadratic function. Explain.

Find the first and second differences.

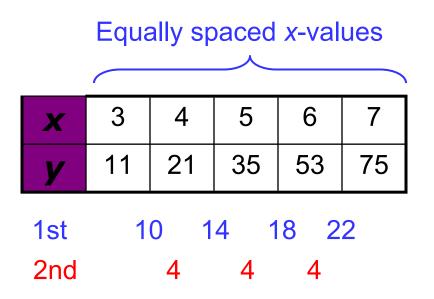

Quadratic function: second differences are constant for equally spaced *x*values

Example 1B: Identifying Quadratic Data

Determine whether the data set could represent a quadratic function. Explain.

X	3	4	5	6	7
Y	1	3	9	27	81

Find the first and second differences.

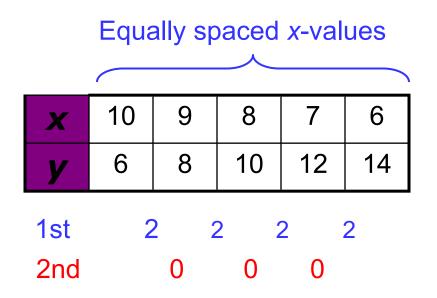

Not a Quadratic function: second differences are not constant for equally spaced x-values

Check It Out! Example 1a

Determine whether the data set could represent a quadratic function. Explain.

X	3	4	5	6	7
y	11	21	35	53	75

Find the first and second differences.


Quadratic function: second differences are constant for equally spaced *x*values

Check It Out! Example 1b

Determine whether the data set could represent a quadratic function. Explain.

X	10	9	8	7	6
y	6	8	10	12	14

Find the first and second differences.

Not a quadratic function: first differences are constant so the function is linear. Just as two points define a linear function, three noncollinear points define a quadratic function. You can find three coefficients a, b, and c, of $f(x) = ax^2$ + bx + c by using a system of three equations, one for each point. The points do not need to have equally spaced x-values.

Reading Math

Collinear points lie on the same line. *Noncollinear* points *do not* all lie on the same line.

Example 2: Writing a Quadratic Function from Data

Write a quadratic function that fits the points (1, -5), (3, 5) and (4, 16).

Use each point to write a system of equations to find *a*, *b*, and *c* in $f(x) = ax^2 + bx + c$.

(<i>x</i> , <i>y</i>)	$f(x) = ax^2 + bx + c$	System in <i>a</i> , <i>b</i> , <i>c</i>
(1 , -5)	$-5 = a(1)^2 + b(1) + c$	$\int a+b+c=-5 \bullet$
(<mark>3</mark> , 5)	$5 = a(3)^2 + b(3) + c$	$\begin{vmatrix} 9a + 3b + c = 5 \end{vmatrix}$
(4, 16)	$16 = a(4)^2 + b(4) + c$	

Subtract equation
by equation to get
.

9 9a + 3b + c = 5

• a + b + c = -5

• 8a + 2b + 0c = 10

Subtract equation • by equation • to get •.

- **a** 16a + 4b + c = 16
- a + b + c = -5
 - 15a + 3b + 0c = 21

Solve equation and equation for a and b using elimination.

■
$$2(15a + 3b = 21) \rightarrow 30a + 6b = 42$$

■ $-3(8a + 2b = 10) \rightarrow -24a - 6b = -30$
 $6a + 0b = 12$
 $a = 2$

Multiply by 2. Multiply by –3. Subtract. Solve for a.

Substitute 2 for *a* into equation **a** or equation **b**.

$$8(2) + 2b = 10 15(2) + 3b = 21 2b = -6 3b = -9 b = -3 b = -3$$

Substitute a = 2 and b = -3 into equation \bullet to solve for *c*.

$$(2) + (-3) + c = -5$$

-1 + c = -5
 $c = -4$

Write the function using a = 2, b = -3 and c = -4. $f(x) = ax^{2} + bx + c \longrightarrow f(x) = 2x^{2} - 3x - 4$

Check Substitute or create a table to verify that (1, -5), (3, 5), and (4, 16) satisfy the function rule.

$$\begin{array}{r}
2(1)^2 - 3(1) - 4 & -5 \\
2(3)^2 - 3(3) - 4 & 5 \\
2(4)^2 - 3(4) - 4 & 16 \\
\end{array}$$

Check It Out! Example 2

Write a quadratic function that fits the points (0, -3), (1, 0) and (2, 1).

Use each point to write a system of equations to find *a*, *b*, and *c* in $f(x) = ax^2 + bx + c$.

(<i>x</i> , <i>y</i>)	$f(x) = ax^2 + bx + c$	System in <i>a</i> , <i>b</i> , <i>c</i>
(<mark>0</mark> , –3)	$-3 = a(0)^2 + b(0) + c$	$\int c = -3$
(1, 0)	$0 = a(1)^2 + b(1) + c$	
(<mark>2</mark> , 1)	$1 = a(2)^2 + b(2) + c$	$\left\lfloor 4a+2b+c=1 \right]$

Substitute c = -3 from equation • into both equation • and equation •.

$$a + b + c = 0$$
 $4a + 2b + c = 1$
 $a + b - 3 = 0$
 $4a + 2b - 3 = 1$
 $a + b = 3$
 $4a + 2b = 4$

Solve equation • and equation • for *b* using elimination.

Substitute 4 for *b* into equation • or equation • to find *a*.

•
$$a + b = 3$$

 $a + 4 = 3$
 $a = -1$
• $a = -1$

Write the function using a = -1, b = 4, and c = -3.

 $f(x) = ax^2 + bx + c \longrightarrow f(x) = -x^2 + 4x - 3$

Check Substitute or create a table to verify that (0, -3), (1, 0), and (2, 1) satisfy the function rule.

You may use any method that you studied in Chapters 3 or 4 to solve the system of three equations in three variables. For example, you can use a matrix equation as shown.

$$\begin{cases} c=5\\ 4a+2b+c=1 \rightarrow \begin{bmatrix} 0 & 0 & 1\\ 4 & 2 & 1\\ 9a+3b+c=2 \end{bmatrix} \begin{bmatrix} a\\ b\\ c \end{bmatrix} = \begin{bmatrix} 5\\ 1\\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} a\\ b\\ c \end{bmatrix} = \begin{bmatrix} 1\\ -4\\ 5 \end{bmatrix}$$
(A) -1 [B]
(B) -1 [B]
(B)

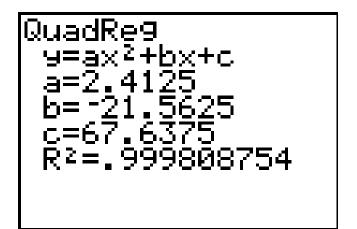
A **<u>quadratic model</u>** is a quadratic function that represents a real data set. Models are useful for making estimates.

In Chapter 2, you used a graphing calculator to perform a *linear regression* and make predictions. You can apply a similar statistical method to make a quadratic model for a given data set using **quadratic regression**.

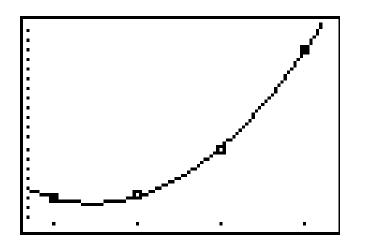
Helpful Hint

The coefficient of determination R^2 shows how well a quadratic function model fits the data. The closer R^2 is to 1, the better the fit. In a model with $R^2 \approx 0.996$, which is very close to 1, the quadratic model is a good fit.

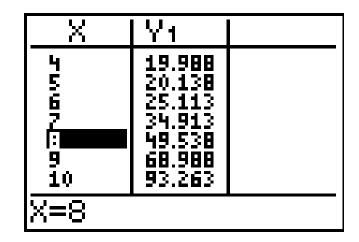
Example 3: Consumer Application


The table shows the cost of circular plastic wading pools based on the pool's diameter. Find a quadratic model for the cost of the pool, given its diameter. Use the model to estimate the cost of the pool with a diameter of 8 ft.

Diameter (ft)	4	5	6	7	
Cost	\$19.95	\$20.25	\$25.00	\$34.95	

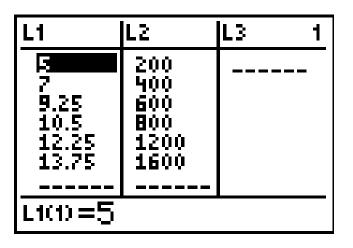

Step 1 Enter the data into two lists in a graphing calculator.

L1	L2	L3 1
	19,95 20,25 25 3 4,95	
L1(1) = 4		


Step 2 Use the quadratic regression feature.

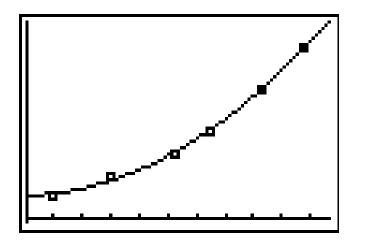
Step 3 Graph the data and function model to verify that the model fits the data.

Step 4 Use the table feature to find the function value *x* = 8.


A quadratic model is $f(x) \approx 2.4x^2 - 21.6x + 67.6$, where x is the diameter in feet and f(x) is the cost in dollars. For a diameter of 8 ft, the model estimates a cost of about \$49.54.

Check It Out! Example 3

The tables shows approximate run times for 16 mm films, given the diameter of the film on the reel. Find a quadratic model for the reel length given the diameter of the film. Use the model to estimate the reel length for an 8-inchdiameter film.


Film R	Film Run Times (16 mm)					
Diameter	Reel Length	Run Time				
(in)	(ft)	(min)				
5	200	5.55				
7	400	11.12				
9.25	600	16.67				
10.5	800	22.22				
12.25	1200	33.33				
13.75	1600	44.25				

Step 1 Enter the data into two lists in a graphing calculator.

Step 2 Use the quadratic regression feature.

Step 3 Graph the data and function model to verify that the model fits the data.

Step 4 Use the table feature to find the function value *x* = 8.

X	Y1	
- - - - - -	205.25 2270.65 22704.28 2274.38 2274.38 3457.55 3457.5	
X=8		

A quadratic model is $L(d) \approx 14.3d^2 - 112.4d + 430.1$, where d is the diameter in inches and L(d) is the reel length. For a diameter of 8 in., the model estimates the reel length to be about 446 ft.

Lesson Quiz: Part I

Determine whether each data set could represent a quadratic function.

1	X	5	6	7	8	9
1.	y	5	8	13	21	34

not quadratic

quadratic

	X	2	3	4	5	6	
2.	y	1	11	25	43	65	

3. Write a quadratic function that fits the points (2, 0), (3, -2), and (5, -12).

 $f(x) = -x^2 + 3x - 2$

Lesson Quiz: Part II

4. The table shows the prices of an ice cream cake, depending on its side. Find a quadratic model for the cost of an ice cream cake, given the diameter. Then use the model to predict the cost of an ice cream cake with a diameter of 18 in.

Diameter (in.)	Cost
6	\$7.50
10	\$12.50
15	\$18.50

$$f(x) \approx -0.011x^2 + 1.43x - 0.67;$$

\$\approx \$21.51