Name:	KEY	
Date: _	3/5-6	Period: <u>4 / </u> 7

Quadratic Formula Word Problems

- 1. Jason jumped off of a cliff into the ocean in Acapulco while vacationing with some friends. His height as a function of time could be modeled by the function $h(t) = -16t^2 + 16t + 480$, where t is the time in seconds and h is the height in feet.
 - a. How long did it take for Jason to reach his maximum height?

 Find vtvtx $x = \frac{b}{2\alpha} = \frac{-(1i)}{2(-1i)} = \frac{-16}{-32} = \boxed{\frac{1}{2}}$ second
 - b. What was the highest point that Jason reached?

 Find vertex y by substituting $h(\frac{1}{2}) = -16(\frac{1}{2})^2 + 16(\frac{1}{2}) + 480$ answer to part a into the $= -16(\frac{1}{4}) + 6480$ function. = -4 + 6 + 480 $h(\frac{1}{2}) = 494$ Feet
 - c. Jason hit the water after how many seconds?

 Ly height = 0 t-b=0 or t+5=0 can there have negative time $-(bt^2+1bt+4b0=0)$ t=b set. t=-5 set.

 After (b seconds.)
- 2. If a toy rocket is launched vertically upward from ground level with an initial velocity of 128 feet per second, then its height h after t seconds is given by the equation $h(t) = -16t^2 + 128t$ (if air resistance is neglected).
 - a. How long will it take for the rocket to return to the ground? $h(t) = -16t^{2} + 129t$ $-16t^{2} + 129t = 0$ -16t(t-8) = 0 -16t(t-8)
 - b. After how many seconds will the rocket be 112 feet above the ground? $112 = -16t^2 + 128t$ $16(t^2 128t + 112 = 0$ $16(t^2 8t + 7) = 0$
 - c. How long will it take the rocket to hit its maximum height?

 \[
 \text{Vertex} \times = \frac{-128}{2a} = \frac{-128}{2(-1a)} = \frac{-128}{-32} = \text{\frac{4}{5tcand5}}
 \]
 - d. What is the maximum height? $h(4) = -16 (4)^{2} + 126 (4)$ = -16 (16) + 512 = -256 + 512 = -256 + 612

vertex

- 3. A rocket is launched from atop a 101 foot cliff with an initial velocity of 116 ft/s.
 - a. Substitute the values into the vertical motion formula $h(t) = -16t^2 + vt + h_0$. Let h(t) = 0
 - b. Use the quadratic formula to find out how long the rocket will take to hit the ground after it is launched. Round to the nearest tenth of a second.

a)
$$0 = -16t^2 + 116t + 101$$

b) $t = -(116) \pm \sqrt{(116)^2 - 4(-10)(10)}$ $t = -0.7856$ or $t = 8.0356$
 $2(-16)$ $t = -0.5656$ $t = 8.0566$.

4. You and a friend are hiking in the mountains. You want to climb to a ledge that is 20 ft. above you. The height of the grappling hook you throw is given by the function $h(t) = -16t^2 + 32t + 5$. What is the maximum height of the grappling hook? Can you throw it high enough to reach the ledge?

Vertex
$$y \Rightarrow h(1) = -16 \left(1\right)^2 + 32 \left(1\right) + 5$$

$$= -16 + 32 + 5$$

$$= 21 \text{ Find Vertex } y \Rightarrow h(1) = -16 \left(1\right)^2 + 32 \left(1\right) + 5$$

$$= 21 \text{ Find Vertex } y \Rightarrow h(2) = -16 \left(1\right)^2 + 32 \left(1\right) + 5$$

5. You are trying to dunk a basketball. You need to jump 2.5 ft. in the air to dunk the ball. The height that your feet are above the ground is given by the function $h(t) = -16t^2 + 12t$. What is the maximum height your feet will be above the ground? Will you be able to dunk the basketball?

(90) Find vertex y-value
vertex
$$y = -\frac{b}{2a} = -\frac{12}{2(-1b)} = -\frac{3}{32}$$
 $\frac{3}{8}$ $\frac{3}{8}$ This player will not be able to dunk the bashetball because $h(\frac{3}{2}) = -\frac{1}{16}(\frac{3}{2})^2 + \frac{12}{4}(\frac{3}{2})$ bashetball because $h(\frac{3}{2}) = \frac{9}{9}$ feet $= 2.25$ feet $= 2.25$ feet.

6. A diver is standing on a platform 24 ft. above the pool. He jumps form the platform with an initi8al upward velocity of 8 ft/s. Use the formula $h(t) = -16t^2 + vt + s$, where h is his height above the water, t is the time, v is his starting upward velocity, and s is his starting height. How long will it take for him to hit the water?

the water?
$$h(t) = -16t^{2} + 8t + 24$$

$$0 = -16t^{2} + 8t + 24$$

$$2(16)$$

$$16t^{2} - 8t - 24 = 0$$

$$t = \frac{3}{2} \text{ Sei} \text{ or } canif have the path of time.}$$