# PURE SUBSTANCES AND MIXTURE NOTES

S8P1a: Develop and use a model to compare and contrast pure substances and mixtures .

## Vocabulary from these notes

- Pure substance: a substance that cannot be broken down by physical means (examples: compounds, elements)
- Element: a pure substance made of only one type of atom (examples: gold, carbon)
- Compound: a pure substance consisting of two or more atoms and two or more different elements chemically bonded together in a specific ratio (chemical formula) and cannot be separated by physical means.
- Molecule: a pure substance made up of two or more atoms bonded together; they can be the same element
- Mixture: a combination of substances that are NOT chemically bonded and can be separated by physical means.

- Heterogeneous mixture: a mixture made up of two or more substances whose parts are easily identifiable (examples: Lucky Charms, mixed vegetables)
- Homogeneous mixture: a mixture made up of two or more substances but that are the same throughout (examples: Dr. Pepper, vanilla ice cream)
- Solution: a mixture of two or more substances that is identical throughout (example: black coffee)

- Solute: the part of a solution that is DISSOLVED (example: if you mix lemonade powder into water, the powder is the solute)
- Solvent: the part of the solution that DISSOLVES the other material (example: if you mix lemonade powder in water, the water is solvent)

#### Matter

Everything around us is either a pure substance, a mixture, or a combination of both.

### Mixtures

Mixtures are a result of a physical change

- A mixture is a combination of substances that are NOT chemically bonded.
- Mixtures are different than pure substances because they can be taken apart by physical processes like boiling, filtering, magnets, using a dropper, distillation and centrifuging.
- Mixtures do not have a chemical formula
- Mixtures are either heterogeneous or homogeneous.
- Mixtures can be solid, liquid, or gas.

### Heterogeneous Mixtures

- Heterogeneous means different. These are not the same throughout. One section may have bigger chunks than other sections.
- You can usually see that the parts are different.
- Example:
  - Salad
  - Chili
  - Dirt
  - A toy box









### Homogeneous Mixtures

- Homogeneous mixtures are the same throughout.
  You can not usually see the parts.
- Examples of homogeneous mixtures:
  - Homogenized milk
  - Ice cream
  - Soft drinks (Coke, Dr. Pepper)
  - Air
  - Brass







### What is a solution?

- A mixture of two or more substances that is identical throughout
- Almost anything can be a solution
  - Solids dissolved in liquids
  - Gases dissolved in liquids (ex. Carbonated water)
  - Liquids in liquids; gases in gases; solids in solids
- If you mix things up and they stay in an even distribution, it is a solution

### **Solutions**

- solution a mixture that appears to be a single substance
- contains particles from 2 or more substances
- described as homogeneous solutions because they have the same appearance and properties throughout the mixture



### What makes up a solution?

Solutions made up of 2 key parts

Solute(s)

Solvent(s)

## **Solutions**



made by dissolving

the <u>solute</u> is the substance or matter being dissolved or is <u>soluble</u> (able to be dissolved) in the solvent

the <u>solvent</u> is the substance into which the solute is dissolved



#### How are solutions made?

- Solute is placed in the solvent.
- Solute slowly breaks into pieces.
- Molecules of the solvent begin to move out of the way and make room for the molecules of solute.
  - Example: If I mixed salt into a glass of water, the water molecules would start moving out of the way for salt molecules.
- The solute and solvent continue to interact with each other until the concentration is the same throughout.

### How it works (In pictures)



#### Important to remember!

Solutions are the same no matter where they are located in a mixture

For example, if you mixed a solution of water and salt and took a sample from the top of the glass, it would have the same amount of salt as if you took it from the bottom or middle of the glass.

# Special types of mixtures

- Alloys: are basically a mixture of two or more metals.
  - Example: brass
- Colloid: a mixture with small undisolved particles that do not settle out, but the particles are large enough to scatter a light beam
  - Example: jello, milk
  - Suspension: a mixture in which particles are large enough to be seen and easily separated by settling or filtration
    - Example: mixing pepper and water; paint; muddy water



#### ALLOY

#### **SUSPENSION**





COLLOID

#### Pure Substances

- Pure substance cannot be broken down by physical means.
- This means you can't take it apart unless you do some serious chemical process.
- Elements are pure substances.
- Compounds are pure substances.

#### Elements: pure substances

- An element is made of only one type of atom.
- Atoms cannot be broken down physically.
- Examples:
  - Li (Lithium) is an element, made of only one type of atom. Therefore, it is a pure substance.
  - Au (Gold) is an element. So, it is a pure substance since the one type of atom can't be broken down.

### Compound: A pure substance

- A compound is made when two or more different elements are chemically bonded together.
- Compounds cannot be broken down except by a chemical process.
- Compounds have formulas that show the specific proportions of the elements that make them.
- A compound has different properties than the elements that make it up.

### **Examples of Compounds**

 $H_2O$ NaCl

 $H_2O_2$ 

CO

**CO**<sub>2</sub>

 $C_6H_{12}O_6$ 

- Water
- Table salt
- Hydrogen peroxide
- Carbon monoxide
- Carbon dioxide
- Glucose

### Molecule

- A molecule is a pure substance made up of at least two atoms bonded together.
- It is similar to a compound EXCEPT a molecule can have the same element.
- Example: The air we breathe has oxygen (O<sub>2</sub>) which is two oxygen atoms bonded together.
- SO: all compounds are molecules; however not all molecules are compounds

# Mixtures vs. Compounds

| Mixtures vs. | Compounds |
|--------------|-----------|
|--------------|-----------|

| 1. Components are<br>elements, compounds, or<br>both             | 1. Components are elements                                                 |
|------------------------------------------------------------------|----------------------------------------------------------------------------|
| 2. Components keep their original properties                     | 2. Components lose their original properties                               |
| 3. Separated by physical means                                   | 3. Separated by chemical means                                             |
| 4. Formed using varying amounts of each substance in the mixture | 4. Formed using a set ratio of components                                  |
| 5. Examples: Air, Sea Water,<br>Rocks                            | 5. Examples: Water, Carbon<br>Dioxide, Magnesium Oxide,<br>Sodium Chloride |