Common Core Georgia Performance Standards Framework

| Accelerated      | CCGPS Pre-Calculus .  | Their 3 |
|------------------|-----------------------|---------|
| SUCCESSION WHERE | CCCS OX 16-CONCRIMO * | UFHLU   |

| .√ame: | <u> </u> |  | Date: |  |
|--------|----------|--|-------|--|
|--------|----------|--|-------|--|

# PROVING THE LAW OF COSINES

- During a baseball game an outfielder caught a ball hit to dead center field, 400 feet from home plate. If the distance from home plate to first base is 90 feet, how far does the outfielder have to throw the ball to get it to first base?
- 1. Model the problem with a picture in the space below. Be sure to label information that you know. (Hint: The bases form a diamond/square - how can you use this information to help model the problem below?)



- 2. Do you have enough information to solve the problem?
  - . If not, what is missing? you need more intormation

400Ft

Typically, you have solved triangles that are right triangles. This is a case where we do not have a right triangle to solve. We know two sides and one included angle.

Common Core Georgia Performance Standards Framework

\*\*Accelerated CCGPS Pre-Calculus • Unit 3\*\*

- In this task, you will develop a method for solving triangles like this using trigonometry. We will come back to the baseball example later. For now, consider the triangle below.
- Assume we **ONLY KNOW** measurements for segments a, b, and angle C.



Step 1: What does segment h represent? height of ABC

What are its properties in this model? 1) it is an altitude

2) It creates two triangles that have a rt. L.

What does it do to the large triangle? It creates two triangles.

Step 2: Write an equation that represents  $c^2$ . (using the left side of the triangle only)

Georgia Department of Education
Common Core Georgia Performance Standards Framework

\*Accelerated CCGPS Pre-Calculus • Unit 3\*

| Explain the method you used. The Pythagarean Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>-</b> . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Step 3: Now write an equation that represents $h^2$ in terms of $b$ and $x$ . (in other words, $b$ and $x$ should be in your equation about $h^2$ ) $h^2 = h^2 - x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| ·<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Substitute this expression into the expression you wrote in step 2. $\frac{h^2 - \chi^2 + (\alpha - \chi)^2}{2} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| $b^{2} + a^{2} - 2ax + x^{2} = c^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Now expand and simplify in the space below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| $C^2 = b^2 + a^2 - 2ax$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Step 4: Now write an expression that represents $x$ in terms of the angle $C$ . (in other words, write an equation that contains angle $C$ when representing $x$ . Use the right side of the triangle only) $\frac{2}{COSC} = \frac{1}{COSC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ž          |
| $\frac{\cos C - \cos C}{x = b \cos C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Substitute this expression into the equation you wrote in step 3. $\frac{(a^2 + b^2 + a^2 - 2a)}{(a^2 + a^2 + a$ | <u>0</u>   |
| Simplify completely in the space below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |

Common Core Georgia Performance Standards Framework Accelerated CCGPS Pre-Calculus . Unit 3

Your final answer is one of three formulas that make up the Law of Cosines. Each of the formulas can be derived in the same way you derived this one by working with each vertex and the other heights of the triangle.

## Law of Cosines

Let a, b, and c be the lengths of the legs of a triangle opposite angles A, B, and C. Then,

$$a^2 = b^2 + c^2 - 2bc(\cos A)$$

$$b^2 = a^2 + c^2 - 2ac(cosB)$$

$$c^2 = a^2 + b^2 - 2ab(cosC)$$

These formulas can be used to solve for unknown lengths and angles in a triangle.

3. Now solve the baseball problem at the beginning of this task using the Law of Cosines in the space below:

$$Q^{2} = (400)^{2} + (90)^{2} - 2(400)(90)(\cos 45^{\circ}) \times -\alpha$$

$$Q^{2} = (400)^{2} + (90)^{2} - 2(400)(90)(\cos 45^{\circ}) \times -\alpha$$

$$Q^{3} = (400)^{2} + (90)^{2} - 2(400)(90)(\cos 45^{\circ}) \times -\alpha$$

$$Q^{3} = (400)^{2} + (90)^{2} - 2(400)(90)(\cos 45^{\circ}) \times -\alpha$$

$$Q^{3} = (400)^{2} + (90)^{2} - 2(400)(90)(\cos 45^{\circ}) \times -\alpha$$

$$Q^{3} = (400)^{2} + (90)^{2} - 2(400)(90)(\cos 45^{\circ}) \times -\alpha$$

$$Q^{3} = (400)^{2} + (90)^{2} + (90)^{2} - 2(400)(90)(\cos 45^{\circ}) \times -\alpha$$

$$Q^{3} = (400)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^{2} + (90)^$$

Here are a few problems to help you apply the Law of Cosines.

4. Two airplanes leave an airport, and the angle between their flight paths is 40°. An hour later, one plane has traveled 300 miles while the other has traveled 200 miles. How far apart are the planes at this time?

$$0^{2} = (300)^{2} + (200)^{2} - 2(300)(200)(\cos 40^{\circ})$$

$$\sqrt{0^{2} = (38074.666083)}$$

$$\sqrt{\alpha} = 195.127 \text{ miles}$$

5. A triangle has sides of 8 and 7 and the angle between these sides is 35°. Solve the triangle.

(Find all missing angles and sides.)  $8^2 = 7^2 + 21.25497 - 2(7)(4.6103)\cos(3)$ 

(Find all missing angles and sides.) 4.6103 02 = 92 + 72 - 2(8)1)(cos33° /Q2 + 21,25497

Georgia Department of Education

Dr. John D. Barge, State School Superintendent

7 2 - 8 2 + 21,2549 - 2(8)(4,6103) April 2013 • Page 28 of 45

- 73.7648(case) - 13,7648

Common Core Georgia Performance Standards Framework

Accelerated CCGPS Pre-Calculus • Unit 3

6. Three soccer players are practicing on a field. The triangle they create has side lengths of 18, 14, and 15 feet. At what angles are they standing from each other?



7. Is it possible to know two sides of a triangle and the included angle and not be able to solve for the third side? NO

$$15^2 = 18^2 + 14^2 - o(18)/4)(\cos 3)$$
  
 $28 = 54.17^{\circ}$