Warm Up

Lesson Presentation

Lesson Quiz

Holt McDougal Geometry

Warm Up : Solve each proportion.

- **1.** $\frac{12}{15} = \frac{AB}{20}$ AB = 16 $\frac{9.5}{QR} = \frac{3.8}{4.2}$ QR = 10.5
- **3.** $\frac{x-5}{20} = \frac{x+3}{30} = \frac{21}{30} = \frac{y+7}{2y-4} = \frac{3.5}{2.8} = \frac{3}{2} = \frac{$

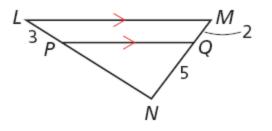
Theorem 7-4-1 Triangle Proportionality Theorem		
THEOREM	HYPOTHESIS	CONCLUSION
If a line parallel to a side of a triangle intersects the othe two sides, then it divides those sides proportionally.	er $ \begin{array}{c} $	$\frac{AE}{EB} = \frac{AF}{FC}$

Example 1: Finding the Length of a Segment

Find US.

It is given that $\overline{ST} = \overline{UV}$, so $\frac{US}{RU} = \frac{VT}{RV}$ by the Triangle Proportionality Theorem.

- $\frac{US}{14} = \frac{4}{10}$ $\frac{Substitute \ 14 \ for \ RU,}{4 \ for \ VT, \ and \ 10 \ for \ RV.}$ US(10) = 56 $Cross \ Products \ Prop.$
- $US = \frac{56}{10}$, or $5\frac{3}{5}$ Divide both sides by 10.


10

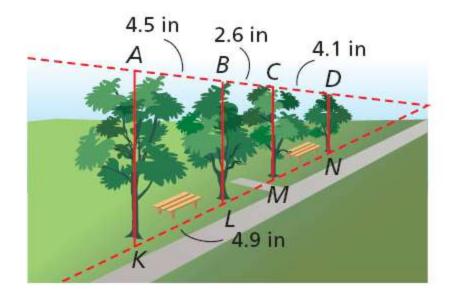
Check It Out! Example 1

Find PN.

Use the Triangle Proportionality Theorem.

$$\frac{LP}{PN} = \frac{MQ}{QN}$$
$$\frac{3}{PN} = \frac{2}{5}$$
$$2PN = 15$$
$$DN = 7.5$$

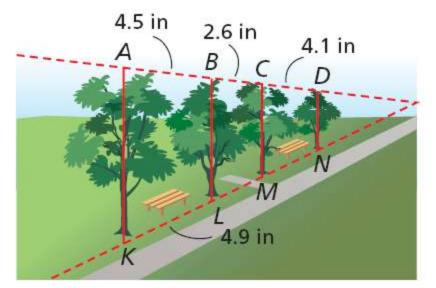
Substitute in the given values.


= 15 Cross Products Prop.

PN = 7.5 *Divide both sides by 2.*

Corollary 7-4-3 Two-Transversal Proportionality			
THEORE	М	HYPOTHESIS	CONCLUSION
If three or more par intersect two transve then they divide the transversals proport	ersals,	$A \uparrow B$ $C \downarrow E F \downarrow$	$\frac{AC}{CE} = \frac{BD}{DF}$

Example 3: Art Application


Suppose that an artist decided to make a larger sketch of the trees. In the figure, if *AB* = 4.5 in., *BC* = 2.6 in., *CD* = 4.1 in., and *KL* = 4.9 in., find *LM* and *MN* to the nearest tenth of an inch.

Example 3 Continued

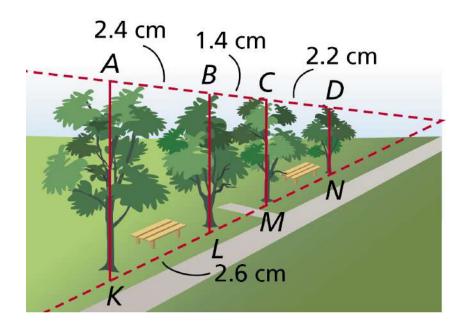
 $\overline{AK} \parallel \overline{BL} \parallel \overline{CM} \parallel \overline{DN} \qquad Given$

 $\frac{KL}{LM} = \frac{AB}{BC} \qquad \begin{array}{l} 2-Trans.\\ Proportionality\\ Corollary\end{array}$

- $\frac{4.9}{LM} = \frac{4.5}{2.6}$ Substitute 4.9 for KL, 4.5 for AB, and 2.6 for BC.
- 4.5(*LM*) = 4.9(2.6) *Cross Products Prop.*

 $LM \approx 2.8$ in. Divide both sides by 4.5.

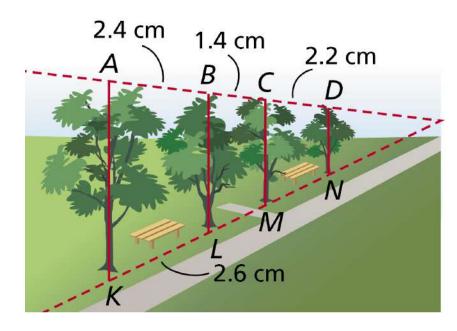
Example 3 Continued


$\frac{KL}{MN} = \frac{AB}{CD}$	2-Trans. Proportionality Corollary	4.5 in 2.6 in 4.1 in A B C D A A A A A A A A A A A A A A A A A A
$\frac{4.9}{MN} = \frac{4.5}{4.1}$	Substitute 4.9 for KL, 4.5 for AB, and 4.1 for CD.	4.9 in

4.5(MN) = 4.9(4.1) Cross Products Prop.

 $MN \approx 4.5$ in. Divide both sides by 4.5.

Check It Out! Example 3


Use the diagram to find *LM* and *MN* to the nearest tenth.

Holt McDougal Geometry

Check It Out! Example 3 Continued

$\overline{AK} \parallel \overline{BL} \parallel \overline{CM} \parallel$	DN Given
$\frac{KL}{LM} = \frac{AB}{BC}$	2-Trans. Proportionality Corollary
$\frac{2.6}{LM} = \frac{2.4}{1.4}$	Substitute 2.6 for KL, 2.4 for AB, and 1.4 for BC.

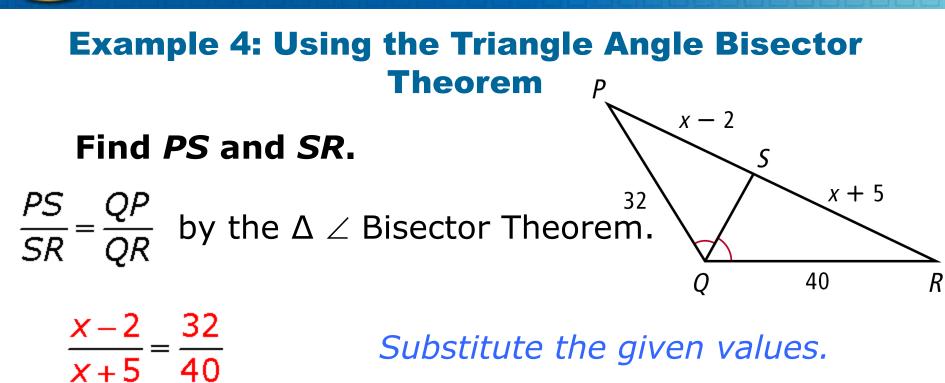
2.4(LM) = 1.4(2.6) Cross Products Prop.

 $LM \approx 1.5 \text{ cm}$ Divide both sides by 2.4.

Holt McDougal Geometry

Check It Out! Example 3 Continued

$\frac{KL}{MN} = \frac{AB}{CD}$	2-Trans. Proportionality Corollary	$\begin{array}{c} 2.4 \text{ cm} \\ A \\ B \\ C \\ D \\ N \\ \end{array}$
$\frac{2.6}{MN} = \frac{2.4}{2.2}$	Substitute 2.6 for KL, 2.4 for AB, and 2.2 for CD.	L 2.6 cm


2.4(MN) = 2.2(2.6) Cross Products Prop.

 $MN \approx 2.4$ cm *Divide both sides by 2.4.*

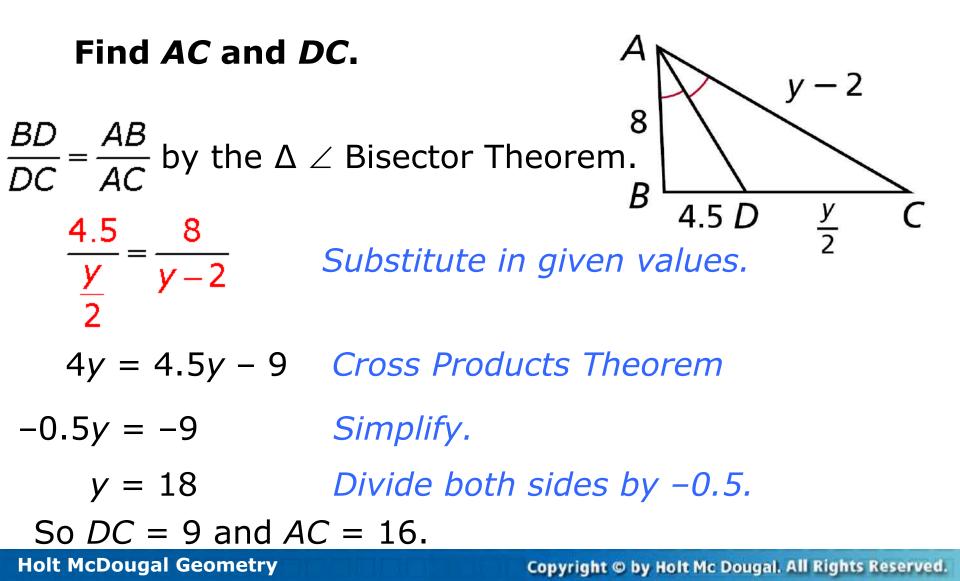
Holt McDougal Geometry

The previous theorems and corollary lead to the following conclusion.

Theorem 7-4-4 Triangle Angle Bisector Theorem		
THEOREM	HYPOTHESIS	CONCLUSION
An angle bisector of a triangle divides the opposite side into two segments whose lengths are proportional to the lengths of the other two sides. $(\Delta \angle Bisector Thm.)$	$B \xrightarrow{A} D C$	$\frac{BD}{DC} = \frac{AB}{AC}$

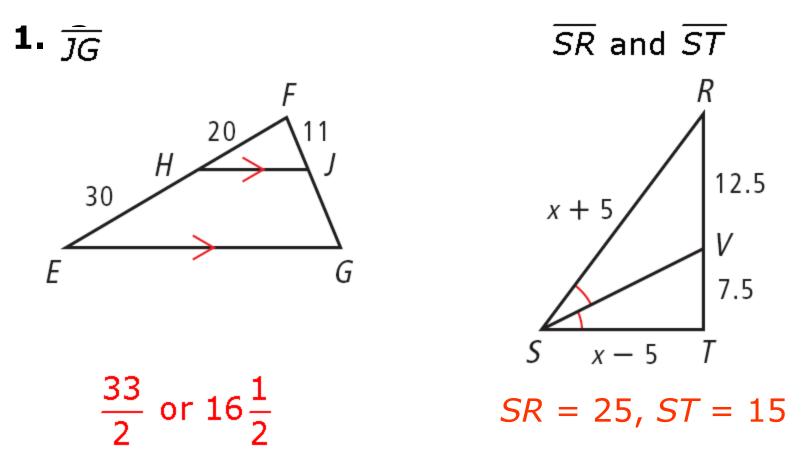
40(x - 2) = 32(x + 5) Cross Products Property

40x - 80 = 32x + 160 *Distributive Property*

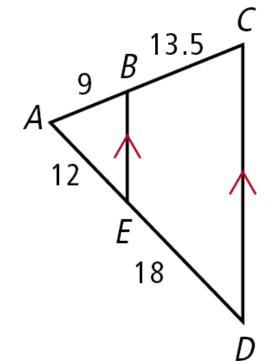

Example 4 Continued

40x - 80 = 32x + 160 8x = 240 x = 30 *Simplify. Divide both sides by 8.*

Substitute 30 for x.


PS = x - 2= 30 - 2 = 28 SR = x + 5= 30 + 5 = 35

Check It Out! Example 4


Lesson Quiz: Part I

Find the length of each segment.

Lesson Quiz: Part II

3. Verify that \overline{BE} and \overline{CD} are parallel.

 $\frac{BC}{AB} = \frac{13.5}{9} = 1.5 \quad \frac{ED}{AE} = \frac{18}{12} = 1.5$ Since $\frac{BC}{AB} = \frac{ED}{AE}$, $\overline{BE} \parallel \overline{CD}$ by the Converse of the Δ Proportionality Thm.