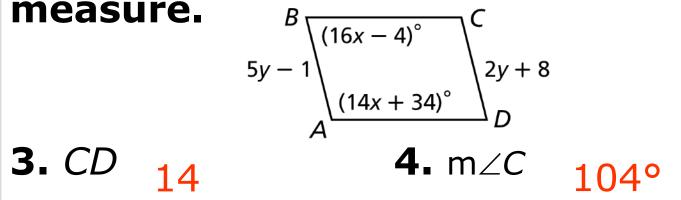
Properties of special parallelograms

Warm Up Solve for *x*.

1.
$$16x - 3 = 12x + 13$$
 4
2. $2x - 4 = 90$ **47**

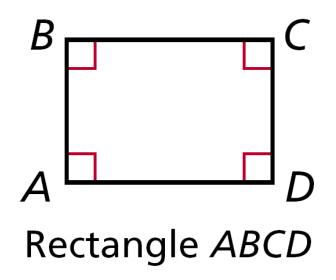
ABCD is a parallelogram. Find each measure.



Prove and apply properties of rectangles, rhombuses, and squares.

Use properties of rectangles, rhombuses, and squares to solve problems.

rectangle rhombus square A second type of special quadrilateral is a *rectangle*. A **rectangle** is a quadrilateral with four right angles.

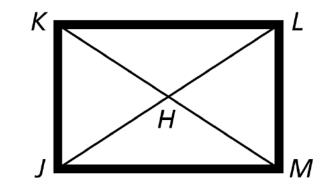


Theorems Properties of Rectangles					
	THEOREM	HYPOTHESIS	CONCLUSION		
6-4-1	If a quadrilateral is a rectangle, then it is a parallelogram. (rect. $\rightarrow \square$)		ABCD is a parallelogram.		
6-4-2	If a parallelogram is a rectangle, then its diagonals are congruent. (rect. \rightarrow diags. \cong)	A D D C	AC ≅ BD		

Since a rectangle is a parallelogram by Theorem 6-4-1, a rectangle "inherits" all the properties of parallelograms that you learned in Lesson 6-2.

Example 1: Craft Application

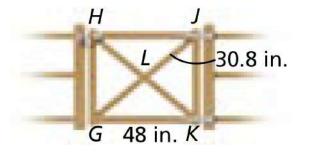
A woodworker constructs a rectangular picture frame so that *JK* = 50 cm and *JL* = 86 cm. Find *HM*.



 $\overline{KM} \cong \overline{JL}$ Rect. \rightarrow diags. \cong KM = JL = 86Def. of \cong segs. $HM = \frac{1}{2}KM$ $\Box 7 \rightarrow$ diags. bisect each other $HM = \frac{1}{2}(86) = 43 \text{ cm}$ Substitute and simplify.

Check It Out! Example 1a

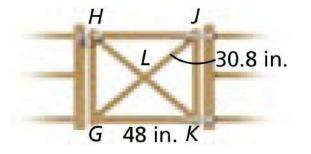
Carpentry The rectangular gate has diagonal braces. Find *HJ*.



 $\overline{HJ} \cong \overline{GK}$ Rect. \rightarrow diags. \cong HJ = GK = 48Def. of \cong segs.

Check It Out! Example 1b

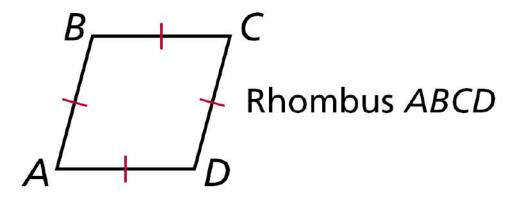
Carpentry The rectangular gate has diagonal braces. Find *HK*.



- $\overline{HK} \cong \overline{JG}$ Rect. \rightarrow diags. \cong
- $\overline{JL} \cong \overline{LG}$ Rect. \rightarrow diagonals bisect each other
- JL = LG Def. of \cong segs.

JG = 2JL = 2(30.8) = 61.6 Substitute and simplify.

A *rhombus* is another special quadrilateral. A **rhombus** is a quadrilateral with four congruent sides.

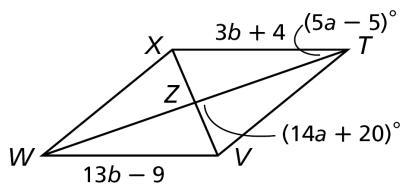


Theore	ms Properties of Rhombuses)	
	THEOREM	HYPOTHESIS	CONCLUSION
6-4-3	If a quadrilateral is a rhombus, then it is a parallelogram. (rhombus $\rightarrow \square$)		ABCD is a parallelogram.
6-4-4	If a parallelogram is a rhombus, then its diagonals are perpendicular. (rhombus → diags. ⊥)		$\overline{AC} \perp \overline{BD}$
6-4-5	If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles. (rhombus \rightarrow each diag. bisects opp. $ ()$	$A = \begin{bmatrix} B \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} C \\ 3 \\ 4 \\ 5 \\ D \end{bmatrix} = \begin{bmatrix} C \\ 2 \\ 5 \\ D \end{bmatrix}$	$\begin{array}{c} \angle 1 \cong \angle 2 \\ \angle 3 \cong \angle 4 \\ \angle 5 \cong \angle 6 \\ \angle 7 \cong \angle 8 \end{array}$

Like a rectangle, a rhombus is a parallelogram. So you can apply the properties of parallelograms to rhombuses.

Example 2A: Using Properties of Rhombuses to Find Measures

TVWX is a rhombus. Find *TV*.



WV = XT Def. of rhombus

13b - 9 = 3b + 4 Substitute given values.

- 10b = 13Subtract 3b from both sides and add9 to both sides.
 - b = 1.3 Divide both sides by 10.

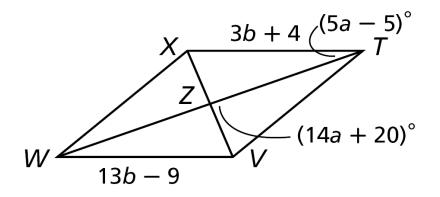
Example 2A Continued

- TV = XT Def. of rhombus
- TV = 3b + 4 Substitute 3b + 4 for XT.

TV = 3(1.3) + 4 = 7.9 Substitute 1.3 for b and simplify.

Example 2B: Using Properties of Rhombuses to Find Measures

TVWX is a rhombus. Find m∠*VTZ*.



m∠VZT :	= 90°
---------	-------

Rhombus \rightarrow *diag.* \perp

 $14a + 20 = 90^{\circ}$

a = 5

Substitute 14a + 20 for $m \angle VTZ$.

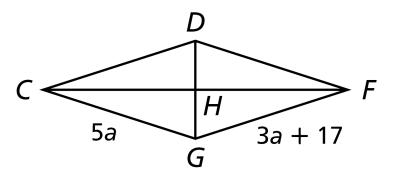
Subtract 20 from both sides and divide both sides by 14.

Example 2B Continued

 $m \angle VTZ = m \angle ZTX$ Rhombus \rightarrow each diag.
bisects opp. $\angle s$ $m \angle VTZ = (5a - 5)^{\circ}$ Substitute 5a - 5 for $m \angle VTZ$. $m \angle VTZ = [5(5) - 5)]^{\circ}$ Substitute 5 for a and simplify.
 $= 20^{\circ}$

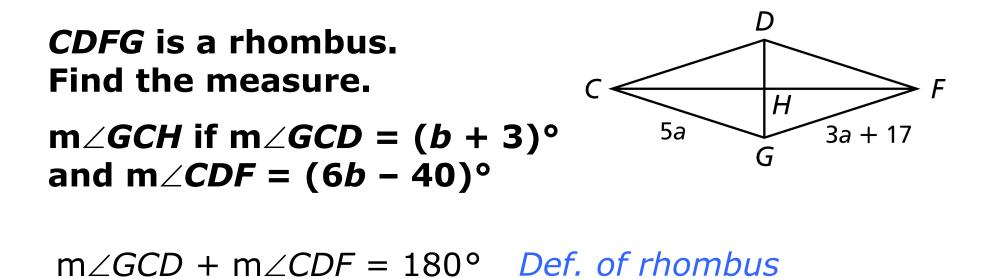
Check It Out! Example 2a

CDFG is a rhombus. Find *CD*.



- CG = GF Def. of rhombus
- 5*a* = 3*a* + 17 *Substitute*
- a = 8.5 Simplify
- *GF* = 3*a* + 17 = 42.5 *Substitute*
 - CD = GF Def. of rhombus
 - *CD* = 42.5 *Substitute*

Check It Out! Example 2b



 $b + 3 + 6b - 40 = 180^{\circ}$ Substitute.

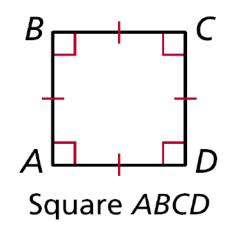
 $7b = 217^{\circ}$ Simplify.

 $b = 31^{\circ}$ Divide both sides by 7.

Check It Out! Example 2b Continued

$$\begin{split} m \angle GCH + m \angle HCD &= m \angle GCD \\ 2m \angle GCH &= m \angle GCD \\ 2m \angle GCH &= (b + 3) \\ 2m \angle GCH &= (b + 3) \\ 2m \angle GCH &= (31 + 3) \\ m \angle GCH &= 17^{\circ} \\ \end{split}$$

A **<u>square</u>** is a quadrilateral with four right angles and four congruent sides. In the exercises, you will show that a square is a parallelogram, a rectangle, and a rhombus. So a square has the properties of all three.

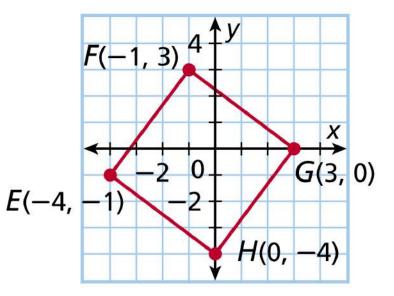


Helpful Hint

Rectangles, rhombuses, and squares are sometimes referred to as *special parallelograms*.

Example 3: Verifying Properties of Squares

Show that the diagonals of square *EFGH* are congruent perpendicular bisectors of each other.



Example 3 Continued

Step 1 Show that \overline{EG} and \overline{FH} are congruent.

$$EG = \sqrt{\left[3 - \left(-4\right)\right]^2 + \left[0 - \left(-1\right)\right]^2} = \sqrt{50}$$
$$FH = \sqrt{\left[0 - \left(-1\right)\right]^2 + \left(-4 - 3\right)^2} = \sqrt{50}$$

Since EG = FH, $\overline{EG} \cong \overline{FH}$.

Example 3 Continued

Step 2 Show that \overline{EG} and \overline{FH} are perpendicular.

slope of
$$\overline{EG} = \frac{0 - (-1)}{3 - (-4)} = \frac{1}{7}$$

slope of
$$\overline{FH} = \frac{-4-3}{0-(-1)} = -7$$

Since
$$\left(\frac{1}{7}\right)(-7) = -1, \overline{EG} \perp \overline{FH}.$$

Example 3 Continued

Step 3 Show that \overline{EG} and \overline{FH} are bisect each other.

mdpt. of
$$\overline{EG}$$
: $\left(\frac{-4+3}{2}, \frac{-1+0}{2}\right) = \left(-\frac{1}{2}, -\frac{1}{2}\right)$
mdpt. of \overline{FH} : $\left(\frac{-1+0}{2}, \frac{3+(-4)}{2}\right) = \left(-\frac{1}{2}, -\frac{1}{2}\right)$

Since \overline{EG} and \overline{FH} have the same midpoint, they bisect each other.

The diagonals are congruent perpendicular bisectors of each other.

Check It Out! Example 3

The vertices of square STVW are S(-5, -4), T(0, 2), V(6, -3), and W(1, -9). Show that the diagonals of square STVW are congruent perpendicular bisectors of each other.

$$SV = TW = \sqrt{122} \text{ so, } \overline{SV} \cong \overline{TW}$$

 $slope \text{ of } \overline{SV} = \frac{1}{11}$
 $slope \text{ of } \overline{TW} = -11$
 $\overline{SV} \perp \overline{TW}$

Check It Out! Example 3 Continued

Step 1 Show that \overline{SV} and \overline{TW} are congruent.

$$SV = \sqrt{\left[6 - \left(-5\right)\right]^2 + \left(-3 - \left(-4\right)\right)^2} = \sqrt{122}$$
$$TW = \sqrt{\left[1 - 0\right]^2 + \left(-9 - 2\right)^2} = \sqrt{122}$$

Since SV = TW, $\overline{SV} \cong \overline{TW}$.

Check It Out! Example 3 Continued

Step 2 Show that \overline{SV} and \overline{TW} are perpendicular.

slope of
$$\overline{SV} = \frac{-3 - (-4)}{6 - (-5)} = \frac{1}{11}$$

slope of
$$\overline{TW} = \frac{-9-2}{1-0} = -11$$

Since
$$\left(\frac{1}{11}\right)(-11) = -1, \ \overline{SV} \perp \overline{TW}.$$

Check It Out! Example 3 Continued

Step 3 Show that \overline{SV} and \overline{TW} bisect each other.

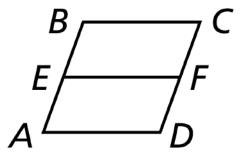
mdpt. of
$$\overline{SV}$$
: $\left(\frac{-5+6}{2}, \frac{-4+(-3)}{2}\right) = \left(\frac{1}{2}, -\frac{7}{2}\right)$
mdpt. of \overline{TW} : $\left(\frac{0+1}{2}, \frac{2+(-9)}{2}\right) = \left(\frac{1}{2}, -\frac{7}{2}\right)$

Since \overline{SV} and \overline{TW} have the same midpoint, they bisect each other.

The diagonals are congruent perpendicular bisectors of each other.

Example 4: Using Properties of Special Parallelograms in Proofs

Given: *ABCD* is a rhombus. *E* is the midpoint of \overline{AB} , and *F* is the midpoint of \overline{CD} . Prove: *AEFD* is a parallelogram.

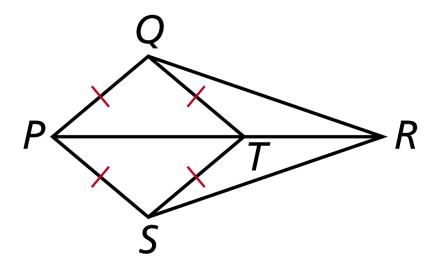


Example 4 Continued

Statements	Reasons
1. ABCD is a rhombus. E is	1. Given.
the midpoint of \overline{AB} . F is the	
midpoint of CD	
2. <i>ABCD</i> is a parallelogram.	2. Rhombus $\rightarrow \Box$
3. AE FD	3. Def. of <i>□</i>
4. $\overline{AB} \cong \overline{CD}$	4. \square → opp. sides \cong
5. $AB = CD$	5. Def. of \cong
6. $AE = \frac{1}{2}AB$, $FD = \frac{1}{2}CD$	6. Def. of mdpt.
7. $FD = \frac{1}{2}AB$	7. Subst.
8. $AE = FD$	8. Trans. Prop. of =
9. $\overline{AE} \cong \overline{FD}$	9. Def. of \cong
10. <i>AEFD</i> is a parallelogram.	10. Quad. with 1 pair of opp.
	sides \cong and $ \rightarrow \square$

Check It Out! Example 4

Given: *PQTS* is a rhombus with diagonal \overline{PR} . **Prove:** $\overline{RQ} \cong \overline{RS}$



Check It Out! Example 4 Continued

Statements	Reasons
1. <i>PQTS</i> is a rhombus.	1. Given.
2. \overline{PT} bisects $\angle QPS$	2. Rhombus \rightarrow each diag. bisects opp. \angle s
3. $\angle QPR \cong \angle SPR$	3. Def. of \angle bisector.
4. $\overline{PQ} \cong \overline{PS}$	4. Def. of rhombus.
5. $\overline{PR} \cong \overline{PR}$	5. Reflex. Prop. of \cong
6. $\triangle QPR \cong \triangle SPR$	6. SAS
7. $\overline{RQ} \cong \overline{RS}$	7. CPCTC

Lesson Quiz: Part I

A slab of concrete is poured with diagonal spacers. In rectangle *CNRT*, *CN* = 35 ft, and *NT* = 58 ft. Find each length.

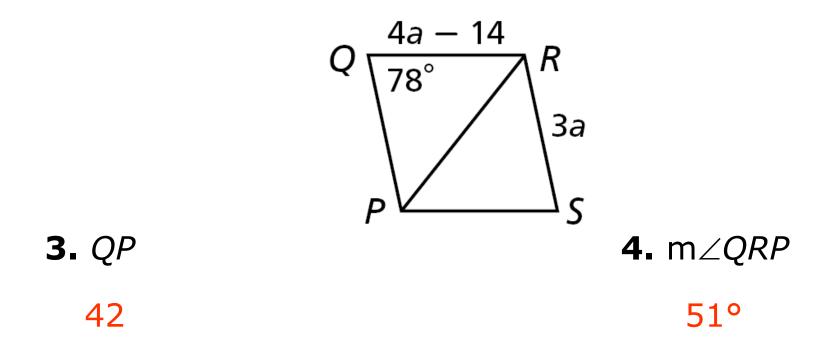


1. *TR* 35 ft

2. *CE* 29 ft

Lesson Quiz: Part II

PQRS is a rhombus. Find each measure.



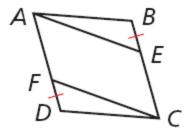
Lesson Quiz: Part III

5. The vertices of square ABCD are A(1, 3), B(3, 2), C(4, 4), and D(2, 5). Show that its diagonals are congruent perpendicular bisectors of each other.

 $AC = BD = \sqrt{10}$, so $\overline{AC} \cong \overline{BD}$. Slope of $\overline{AC} = \frac{1}{3}$, and slope of $\overline{BD} = -3$, so $\overline{AC} \perp \overline{BD}$. (2.5, 3.5) is the mdpt. of \overline{AC} and \overline{BD} , so \overline{AC} and \overline{BD} bisect each other.

Lesson Quiz: Part IV

6. Given: *ABCD* is a rhombus. $\overline{DF} \cong \overline{BE}$ **Prove:** $\Delta ABE \cong \Delta CDF$



- 1. ABCD is a rhombus. (Given)
- 2. $\overline{AB} \cong \overline{CD}$ (Def. of rhombus)
- 3. *ABCD* is a \square (Rhombus $\rightarrow \square$)
- 4. $\angle B \cong \angle D \ (\Box \rightarrow \text{opp}. \angle \cong)$
- 5. $\overline{DF} \cong \overline{BE}$ (Given)
- **6.** $\triangle ABE \cong \triangle CDF$ (SAS)