Properties of arcs and chords

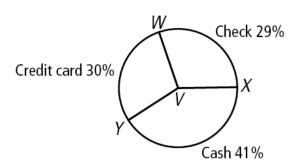
Warm Up

- **1.** What percent of 60 is 18? 30
- **2.** What number is 44% of $6?_{2.64}$

3. Find $m \angle WVX$.

104.4°

Payment Methods



Objectives

Apply properties of arcs.

Apply properties of chords.

Vocabulary

central angle semicircle

arc adjacent arcs

minor arc congruent arcs

major arc

A <u>central angle</u> is an angle whose vertex is the center of a circle. An <u>arc</u> is an unbroken part of a circle consisting of two points called the endpoints and all the points on the circle between them.

Arcs and Their Measure

ARC	MEASURE	DIAGRAM
A minor arc is an arc whose points are on or in the interior of a central angle.	The measure of a minor arc is equal to the measure of its central angle. $\widehat{AC} = m \angle ABC = x^{\circ}$	$B^{X^{\circ}}$
A major arc is an arc whose points are on or in the exterior of a central angle.	The measure of a major arc is equal to 360° minus the measure of its central angle. $m\widehat{ADC} = 360^{\circ} - m\angle ABC$ $= 360^{\circ} - x^{\circ}$	$B^{X^{\circ}}$
If the endpoints of an arc lie on a diameter, the arc is a semicircle.	The measure of a semicircle is equal to 180° . $m\widehat{EFG} = 180^{\circ}$	$E \stackrel{F}{\longleftarrow} G$

Writing Math

Minor arcs may be named by two points. Major arcs and semicircles must be named by three points.

Example 1: Data Application

The circle graph shows the types of grass planted in the yards of one neighborhood. Find $m\widehat{KLF}$.

$$m\widehat{KLF} = 360^{\circ} - m\angle KJF$$

$$m\angle KJF = 0.35(360^{\circ})$$

$$= 126^{\circ}$$

$$m\widehat{KLF} = 360^{\circ} - 126^{\circ}$$

$$= 234^{\circ}$$
Types of Grass
$$\stackrel{F}{\text{convision}} 20\%$$
Centipedegrass
$$\stackrel{G}{\text{Fescue 8}\%}$$
Bermuda 7%

Check It Out! Example 1

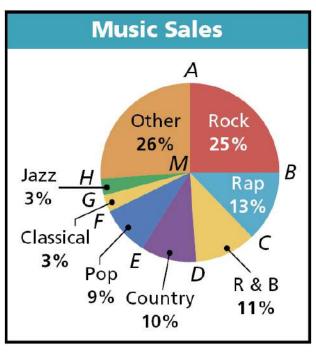
Use the graph to find each of the following.

a.
$$m\angle FMC$$

 $m\angle FMC = 0.30(360^{\circ})$
 $= 108^{\circ}$

Central \angle is 30% of the \odot .

b.
$$\widehat{mAHB} = 360^{\circ} - m\angle AMB$$
 c. $m\angle EMD = 0.10(360^{\circ})$ $m\angle AHB = 360^{\circ} - 0.25(360^{\circ})$ $= 36^{\circ}$ $= 270^{\circ}$ *Central* \angle *is* 10% of the \odot



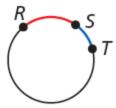
c.
$$m\angle EMD = 0.10(360^{\circ})$$

= 36°

Central \angle is 10% of the \odot .

Adjacent arcs are arcs of the same circle that intersect at exactly one point.

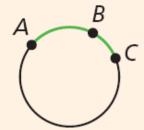
RS and ST are adjacent arcs.



Postulate 11-2-1 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

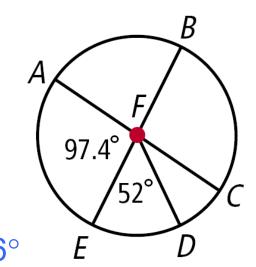
$$\widehat{\mathsf{mABC}} = \widehat{\mathsf{mAB}} + \widehat{\mathsf{mBC}}$$



Example 2: Using the Arc Addition Postulate

Find m \widehat{BD} .

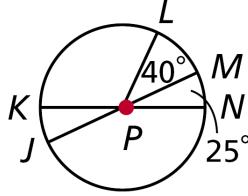
$$\widehat{mBC} = 97.4^{\circ}$$
 $Vert. \angle s Thm.$
 $m\angle CFD = 180^{\circ} - (97.4^{\circ} + 52^{\circ})$
 $= 30.6^{\circ}$ $\triangle Sum Thm.$
 $\widehat{mCD} = 30.6^{\circ}$ $m\angle CFD = 30.6^{\circ}$
 $\widehat{mBD} = \widehat{mBC} + \widehat{mCD}$ $Arc Add. Post.$
 $= 97.4^{\circ} + 30.6^{\circ}$ $Substitute.$
 $= 128^{\circ}$ $Simplify.$



Check It Out! Example 2a

Find each measure.

$$m\angle \mathit{KPL} = 180^\circ - (40 + 25)^\circ$$
 $m\widehat{\mathit{KL}} = 115^\circ$
 $m\widehat{\mathit{JKL}} = m\widehat{\mathit{JK}} + m\widehat{\mathit{KL}}$
 $= 25^\circ + 115^\circ$
 $= 140^\circ$
 $Simplify.$

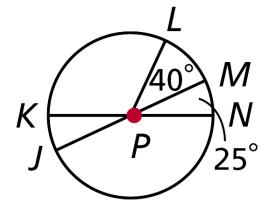


Check It Out! Example 2b

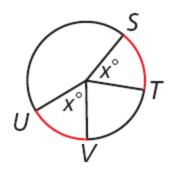
Find each measure.

$$m\widehat{LJN} = 360^{\circ} - (40 + 25)^{\circ}$$

= 295°



Within a circle or congruent circles, **congruent arcs** are two arcs that have the same measure. In the figure $\widehat{ST} \cong \widehat{UV}$.



Theorem 11-2-2

THEOREM	HYPOTHESIS	CONCLUSION
In a circle or congruent circles:	D) C	
(1) Congruent central angles have congruent chords.	E ∠EAD ≅ ∠BAC	DE ≅ BC
(2) Congruent chords have congruent arcs.	E A $ED \cong BC$	DE ≅ BC
(3) Congruent arcs have congruent central angles.	$\widehat{ED} \cong \widehat{BC}$	∠DAE ≅ ∠BAC

Example 3A: Applying Congruent Angles, Arcs, and Chords

$$\overline{TV} \cong \overline{WS}$$
. Find m \widehat{WS} .

$$\widehat{TV} \cong \widehat{WS}$$

 $\widehat{mTV} = \widehat{mWS}$

 \cong chords have \cong arcs.

Def. of ≅ arcs

$$9n - 11 = 7n + 11$$

Substitute the given measures.

$$2n = 22$$

Subtract 7n and add 11 to both sides.

 $(9n - 11)^{\circ}$

$$n = 11$$

Divide both sides by 2.

$$mWS = 7(11) + 11$$
 Substitute 11 for n.
= 88° Simplify.

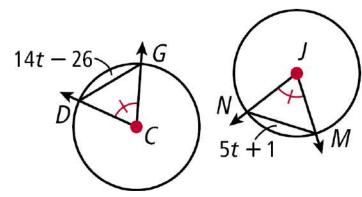
Example 3B: Applying Congruent Angles, Arcs, and Chords

 $\odot C \cong \odot J$, and m $\angle GCD \cong m\angle NJM$. Find NM.

$$\widehat{GD} \cong \widehat{NM}$$
 $\angle GCD \cong \angle NJM$

$$\overline{GD} \cong \overline{NM} \cong arcs have \cong chords.$$

$$GD = NM$$
 Def. of \cong chords



Example 3B Continued

 \odot *C* \cong \odot *J*, and m \angle *GCD* \cong m \angle *NJM*. Find *NM*.

$$14t - 26 = 5t + 1$$
 Substitute the given measures.

$$9t = 27$$
 Subt

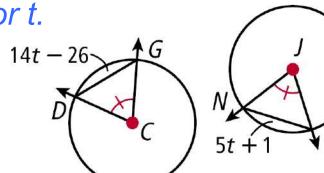
Subtract 5t and add 26 to both sides.

$$t = 3$$

Divide both sides by 9.

$$NM = 5(3) + 1$$
 Substitute 3 for t.

= 16 *Simplify.*



Check It Out! Example 3a

\overrightarrow{PT} bisects $\angle RPS$. Find RT.

$$\angle RPT \cong \angle SPT$$

$$\widehat{\mathsf{mRT}} \cong \widehat{\mathsf{mTS}}$$

$$RT = TS$$

$$6x = 20 - 4x$$

$$10x = 20$$

Add 4x to both sides.

$$x = 2$$

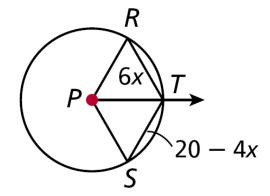
Divide both sides by 10.

$$RT = 6(2)$$

Substitute 2 for x.

$$RT = 12$$

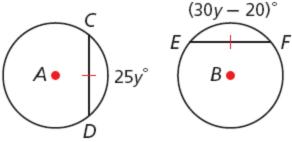
Simplify.



Check It Out! Example 3b

Find each measure.

$$\odot A \cong \odot B$$
, and $\overline{CD} \cong \overline{EF}$. Find \widehat{mCD} .



$$\widehat{mCD} = \widehat{mEF}$$

 \cong chords have \cong arcs.

$$25y^{\circ} = (30y - 20)^{\circ}$$

Substitute.

$$20 = 5y$$

Subtract 25y from both sides. Add

20 to both sides.

$$4 = y$$

Divide both sides by 5.

$$CD = 25(4)$$

Substitute 4 for y.

$$\widehat{\text{mCD}} = 100^{\circ}$$

Simplify.

Theorems

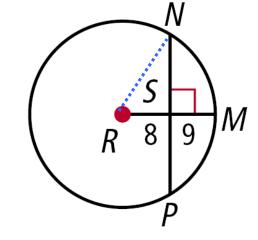
THI	EOREM	HYPOTHESIS	CONCLUSION
(or d perpo a cho bisec	circle, if a radius iameter) is endicular to ord, then it ts the chord its arc.	$C \longrightarrow F$ $CD \perp \overline{EF}$	$\overline{\it CD}$ bisects $\overline{\it EF}$ and $\widehat{\it EF}$.
bisec is a r	circle, the endicular tor of a chord adius (or eter).	J G K is \bot bisector of \overline{GH} .	JK is a diameter of ⊙A.

Example 4: Using Radii and Chords

Find NP.

Step 1 Draw radius \overline{RN} .

$$RN = 17$$
 Radii of a \odot are \cong .



Step 2 Use the Pythagorean Theorem.

$$SN^2 + RS^2 = RN^2$$

 $SN^2 + 8^2 = 17^2$ Substitute 8 for RS and 17 for RN.
 $SN^2 = 225$ Subtract 82 from both sides.
 $SN = 15$ Take the square root of both sides.

Step 3 Find NP.

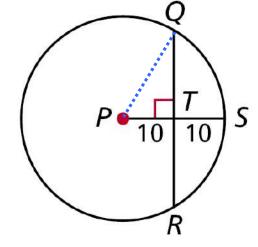
$$NP = 2(15) = 30$$
 $RM \perp NP$, so RM bisects NP .

Check It Out! Example 4

Find QR to the nearest tenth.

Step 1 Draw radius \overline{PQ} .

$$PQ = 20$$
 Radii of a \odot are \cong .



Step 2 Use the Pythagorean Theorem.

$$TQ^2 + PT^2 = PQ^2$$

 $TQ^2 + \mathbf{10}^2 = \mathbf{20}^2$ Substitute 10 for PT and 20 for PQ.
 $TQ^2 = 300$ Subtract 10^2 from both sides.
 $TQ \approx 17.3$ Take the square root of both sides.

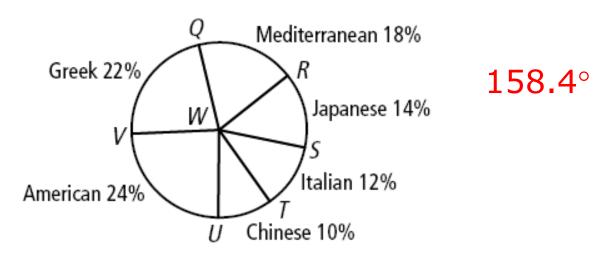
Step 3 Find QR.

$$QR = 2(17.3) = 34.6$$
 $\overline{PS} \perp \overline{QR}$, so \overline{PS} bisects \overline{QR} .

Lesson Quiz: Part I

1. The circle graph shows the types of cuisine available in a city. Find mTRQ.

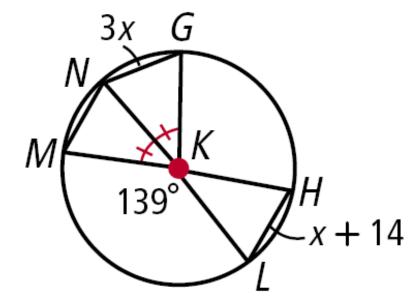
Types of Food



Lesson Quiz: Part II

Find each measure.

3. HL 21



Lesson Quiz: Part III

4. $\odot T \cong \odot U$, and AC = 47.2. Find PL to the nearest tenth.

