Properties of parallelograms

Prove and apply properties of parallelograms.

Use properties of parallelograms to solve problems.

parallelogram

Any polygon with four sides is a quadrilateral. However, some quadrilaterals have special properties. These *special quadrilaterals* are given their own names.

Helpful Hint

Opposite sides of a quadrilateral do not share a vertex. Opposite angles do not share a side.

A quadrilateral with two pairs of parallel sides is a **parallelogram**. To write the name of a parallelogram, you use the symbol

 $\overline{AB} \parallel \overline{CD}, \overline{BC} \parallel \overline{DA}$

THEOREM	HYPOTHESIS	CONCLUSIO
If a quadrilateral is a parallelogram, then its opposite sides are congruent. $(\Box \rightarrow opp, sides \simeq)$		$\frac{\overline{AB}}{\overline{BC}} \cong \frac{\overline{CD}}{\overline{DA}}$

Theorems Properties of Parallelograms				
	THEOREM	HYPOTHESIS	CONCLUSION	
6-2-2	If a quadrilateral is a parallelogram, then its opposite angles are congruent. $(\Box \rightarrow \text{opp. } \& \cong)$		$\frac{\angle A \cong \angle C}{\angle B \cong \angle D}$	
6-2-3	If a quadrilateral is a parallelogram, then its consecutive angles are supplementary. $(\Box \rightarrow \text{cons. } \& \text{ supp.})$		$m\angle A + m\angle B = 180^{\circ}$ $m\angle B + m\angle C = 180^{\circ}$ $m\angle C + m\angle D = 180^{\circ}$ $m\angle D + m\angle A = 180^{\circ}$	
6-2-4	If a quadrilateral is a parallelogram, then its diagonals bisect each other. ($\Box \rightarrow$ diags. bisect each other)	A	$\overline{AZ} \cong \overline{CZ}$ $\overline{BZ} \cong \overline{DZ}$	

Example 1A: Properties of Parallelograms

- $\overline{CF} \cong \overline{DE}$ $\square \rightarrow opp. sides \cong$
- CF = DE Def. of \cong segs.
- *CF* = 74 mm *Substitute 74 for DE.*

Example 1B: Properties of Parallelograms

 $m \angle EFC + m \angle FCD = 180^{\circ} \square \rightarrow cons. \angle s supp.$

 $m\angle EFC + 42 = 180$ Substitute 42 for $m\angle FCD$.

 $m\angle EFC = 138^{\circ}$ Subtract 42 from both sides.

Example 1C: Properties of Parallelograms

- $DF = 2DG \longrightarrow diags. bisect each other.$
- DF = 2(31) Substitute 31 for DG.
- DF = 62 Simplify.

Check It Out! Example 1a

In $\square KLMN$, LM = 28 in., LN = 26 in., and $m \angle LKN = 74^{\circ}$. Find KN.

- $\overline{LM} \cong \overline{KN} \qquad \qquad \square \rightarrow opp. \ sides \cong$
- LM = KN Def. of \cong segs.
- *LM* = 28 in. *Substitute 28 for DE.*

Check It Out! Example 1b

In $\square KLMN$, LM = 28 in., LN = 26 in., and $m \angle LKN = 74^{\circ}$. Find $m \angle NML$.

 $\angle NML \cong \angle LKN$

 $m \angle NML = m \angle LKN$

m∠*NML* = **74**°

 $\square \rightarrow opp. \ \angle s \cong$

Def. of $\cong \angle s$.

Substitute 74° *for m*∠*LKN*.

M

K

Def. of angles.

Check It Out! Example 1c

In $\Box KLMN$, LM = 28 in., LN = 26 in., and $m \angle LKN = 74^{\circ}$. Find LO.

- $LN = 2LO \longrightarrow diags. bisect each other.$
- $26 = 2LO \qquad Substitute 26 for LN.$
- LO = 13 in. Simplify.

Example 2A: Using Properties of Parallelograms to Find Measures 6a + 10

WXYZ is a parallelogram. Find *YZ*.

 $\overline{YZ} \cong \overline{XW}$

YZ = XW Def. of \simeq seqs.

8a - 4 = 6a + 10 Substitute the given values.

- 2a = 14 Subtract 6a from both sides and add 4 to both sides.
 - a = 7 Divide both sides by 2.

$$YZ = 8a - 4 = 8(7) - 4 = 52$$

Example 2B: Using Properties of Parallelograms to Find Measures

WXYZ is a parallelogram. Find $m\angle Z$.

$$\begin{array}{r}
6a + 10 \\
W \\
(18b - 11)^{\circ} \\
(9b + 2)^{\circ} \\
Z \\
8a - 4 \\
Y
\end{array}$$

 $m \angle Z + m \angle W = 180^{\circ} \square \Rightarrow cons. \ \angle s \ supp.$ (9b + 2) + (18b - 11) = 180 Substitute the given values. 27b - 9 = 180 Combine like terms. 27b = 189 Add 9 to both sides. b = 7 Divide by 27. $m \angle Z = (9b + 2)^{\circ} = [9(7) + 2]^{\circ} = 65^{\circ}$

Check It Out! Example 2a

EFGH is a parallelogram. Find *JG*.

- $\overline{EJ} \cong \overline{JG} \longrightarrow diags.$ bisect each other.
- EJ = JG Def. of \cong segs.
- 3w = w + 8 Substitute.
- 2w = 8 Simplify.
- w = 4 Divide both sides by 2.

JG = w + 8 = 4 + 8 = 12

Check It Out! Example 2b

- $\overline{FJ} \cong \overline{JH} \longrightarrow diags.$ bisect each other.
- FJ = JH Def. of \cong segs.
- 4z 9 = 2z Substitute.
 - 2z = 9 *Simplify*.
 - z = 4.5 Divide both sides by 2.

FH = (4z - 9) + (2z) = 4(4.5) - 9 + 2(4.5) = 18

Remember!

When you are drawing a figure in the coordinate plane, the name *ABCD* gives the order of the vertices.

Example 3: Parallelograms in the Coordinate Plane

Three vertices of $\Box JKLM$ are J(3, -8), K(-2, 2),and L(2, 6). Find the coordinates of vertex M.

Since *JKLM* is a parallelogram, both pairs of opposite sides must be parallel.

Step 1 Graph the given points.

Example 3 Continued

Step 2 Find the slope of \overline{KL} by counting the units from K to L.

The rise from 2 to 6 is 4.

The run of -2 to 2 is 4.

Step 3 Start at **J** and count the same number of units.

A rise of 4 from -8 is -4.

A run of 4 from 3 is 7. Label (7, -4) as vertex M.

Example 3 Continued

Step 4 Use the slope formula to verify that $LM \parallel KJ$.

The coordinates of vertex *M* are (7, -4).

Check It Out! Example 3

Three vertices of $\Box PQRS$ are P(-3, -2), Q(-1, 4), and S(5, 0). Find the coordinates of vertex R.

Since *PQRS* is a parallelogram, both pairs of opposite sides must be parallel.

Step 1 Graph the given points.

Check It Out! Example 3 Continued

Step 2 Find the slope of \overline{PQ} by counting the units from *P* to *Q*.

The rise from -2 to 4 is 6.

The run of -3 to -1 is 2.

Step 3 Start at *S* and count the same number of units.

A rise of 6 from 0 is 6.

A run of 2 from 5 is 7. Label (7, 6) as vertex R.

Check It Out! Example 3 Continued

Step 4 Use the slope formula to verify that $PQ \parallel SR$.

The coordinates of vertex *R* are (7, 6).

Example 4A: Using Properties of Parallelograms in a Proof

Write a two-column proof.

Given: ABCD is a parallelogram.

Prove: $\triangle AEB \cong \triangle CED$

Example 4A Continued

Proof:

Statements	Reasons
1. ABCD is a parallelogram	1. Given
2. $\overline{AB} \cong \overline{CD}$	2. $\square \rightarrow$ opp. sides \cong
3. $\overline{AE} \cong \overline{CE}, \overline{BE} \cong \overline{DE}$	3. $\square \rightarrow$ diags. bisect each other
4. △AEB ≅ △CED	4. SSS <i>Steps 2, 3</i>

Example 4B: Using Properties of Parallelograms in a Proof

Write a two-column proof.

Given: *GHJN* and *JKLM* are parallelograms. *H* and *M* are collinear. *N* and *K* are collinear.

Prove: $\angle H \cong \angle M$

Example 4B Continued

Proof:

Statements	Reasons
 GHJN and JKLM are parallelograms. 	1. Given
2. $\angle H$ and $\angle HJN$ are supp. $\angle M$ and $\angle MJK$ are supp.	2. $\square \rightarrow \text{cons.} \angle \text{s supp.}$
3. ∠HJN ≅ ∠MJK	3. Vert. ∠s Thm.
4. $\angle H \cong \angle M$	4. \cong Supps. Thm.

Check It Out! Example 4

Write a two-column proof.

Given: *GHJN* and *JKLM* are parallelograms. *H* and *M* are collinear. *N* and *K* are collinear.

Prove: $\angle N \cong \angle K$

Check It Out! Example 4 Continued

Proof:

Statements	Reasons
 GHJN and JKLM are parallelograms. 	1. Given
2. $\angle N$ and $\angle HJN$ are supp. $\angle K$ and $\angle MJK$ are supp.	2. $\Box \rightarrow$ cons. \angle s supp.
3. ∠HJN ≅ ∠MJK	3. Vert. ∠s Thm.
4. ∠ <i>N</i> ≅ ∠ <i>K</i>	4. \cong Supps. Thm.

Lesson Quiz: Part I

In $\square PNWL$, NW = 12, PM = 9, and $m \angle WLP = 144^{\circ}$. Find each measure.

 1. PW
 2. m∠PNW

 18
 144°

Lesson Quiz: Part II

QRST is a parallelogram. Find each measure.

Lesson Quiz: Part III

5. Three vertices of $\square ABCD$ are A(2, -6), B(-1, 2), and C(5, 3). Find the coordinates of vertex D.

(8, -5)

Lesson Quiz: Part IV

6. Write a two-column proof. **Given:** *RSTU* is a parallelogram. **Prove:** $\Delta RSU \cong \Delta TUS$

Statements	Reasons
1. <i>RSTU</i> is a parallelogram.	1. Given
2. RU ≅ TS; RS ≅ UT	2. □ → cons. ∠s ≅
3. $\angle R \cong \angle T$	3. □ → opp. ∠s ≅
4. $\Delta RSU \cong \Delta TUS$	4. SAS