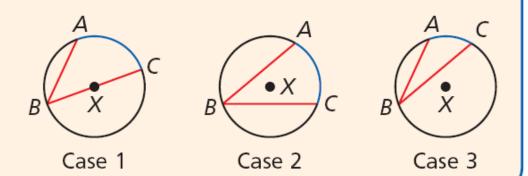


Vocabulary

inscribed angle intercepted arc subtend

∠*DEF* is an inscribed angle.

 \widehat{DF} is the intercepted arc.

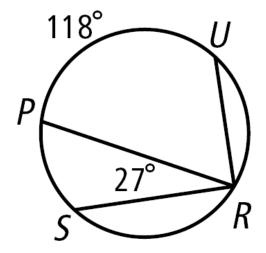

 \widehat{DF} subtends $\angle DEF$.

Theorem 11-4-1

Inscribed Angle Theorem

The measure of an inscribed angle is half the measure of its intercepted arc.

$$m\angle ABC = \frac{1}{2}m\widehat{AC}$$



Example 1A: Finding Measures of Arcs and Inscribed Angles

Find each measure.

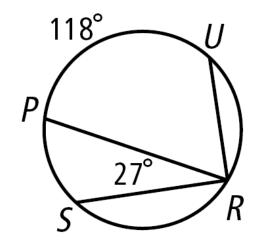
m/PRU

$$m\angle PRU = \frac{1}{2}m\widehat{PU}$$
 Inscribed \angle Thm.

$$=\frac{1}{2}(118^{\circ})=59^{\circ}$$
 Substitute 118 for mPU.

Example 1B: Finding Measures of Arcs and Inscribed Angles

Find each measure.


$$m\angle SRP = \frac{1}{2}m\widehat{SP}$$
 Inscribed \angle Thm.

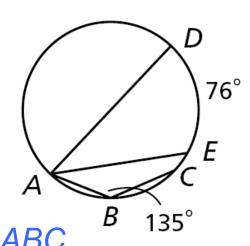
$$27^{\circ} = \frac{1}{2} \text{m} \widehat{SP}$$

 $27^{\circ} = \frac{1}{2} \text{m} \widehat{SP}$ Substitute 27 for $m \angle SRP$.

$$\widehat{\text{mSP}} = 54^{\circ}$$

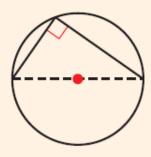
 $m\widehat{SP} = 54^{\circ}$ Multiply both sides by 2.

Check It Out! Example 1a


Find each measure.

mÂDC

$$m\angle ABC = \frac{1}{2}m\widehat{ADC}$$
 Inscribed \angle Thm.


$$270^{\circ} = m\widehat{ADC}$$
 Multiply both sides by 2.

Theorem 11-4-3

An inscribed angle subtends a semicircle if and only if the angle is a right angle.

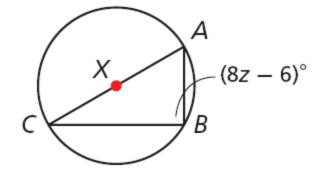
Example 3A: Finding Angle Measures in Inscribed Triangles

Find a.

 $\angle WZY$ is a right angle $\angle WZY$ is inscribed in a semicircle.

 $m\angle WZY = 90^{\circ}$

Def of rt. ∠


5a + 20 = 90Substitute 5a + 20 for $m \angle WZY$.

5a = 70Subtract 20 from both sides.

a = 14Divide both sides by 5.

Check It Out! Example 3a

Find z.

 $\angle ABC$ is a right angle $\angle ABC$ is inscribed in a semicircle.

$$m\angle ABC = 90^{\circ}$$

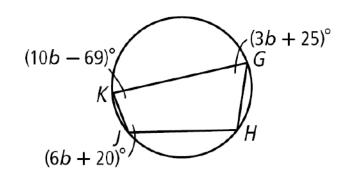
Def of rt. \(\times \)

$$8z - 6 = 90$$
 Substitute.

$$8z = 96Add 6$$
 to both sides.

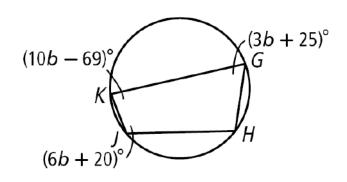
$$z = 12$$
Divide both sides by 8.

Theorem 11-4-4


THEOREM HYPOTHESIS CONCLUSION If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary. $\angle A$ and $\angle C$ are supplementary. $\angle B$ and $\angle D$ are supplementary. ABCD is inscribed in $\odot E$.

Example 4: Finding Angle Measures in Inscribed Quadrilaterals

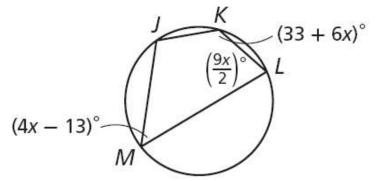
Find the angle measures of *GHJK*.


Step 1 Find the value of *b*.

$$m\angle G + m\angle J = 180^{\circ}$$
 GHJK is inscribed in a \odot .
 $3b + 25 + 6b + 20 = 180$ Substitute the given values.
 $9b + 45 = 180$ Simplify.
 $9b = 135$ Subtract 45 from both sides.
 $b = 15$ Divide both sides by 9.

Example 4 Continued

Step 2 Find the measure of each angle.



$$m \angle G = 3(15) + 25 = 70^{\circ}$$
 Substitute 15 for b
 $m \angle J = 6(15) + 20 = 110^{\circ}$ in each expression.
 $m \angle K = 10(15) - 69 = 81^{\circ}$
 $m \angle H + m \angle K = 180^{\circ}$ $\angle H$ and $\angle K$ are supp.
 $m \angle H + 81^{\circ} = 180^{\circ}$ Substitute 81 for $m \angle K$.
 $m \angle H = 99^{\circ}$ Subtract 81 from both sides

Check It Out! Example 4

Find the angle measures of *JKLM*.

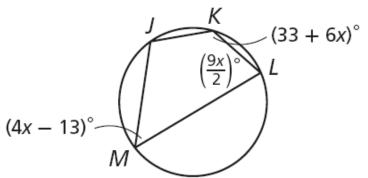
Step 1 Find the value of b.

$$m\angle M + m\angle K = 180^{\circ}$$
 JKLM is inscribed in a \odot .

$$4x - 13 + 33 + 6x = 180$$
 Substitute the given values.

$$10x + 20 = 180$$
 Simplify.

$$10x = 160$$
 Subtract 20 from both sides.


$$x = 16$$
 Divide both sides by 10.

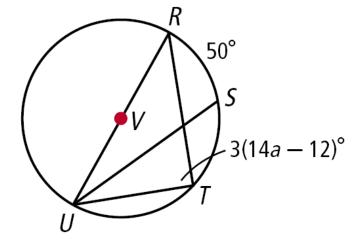
Check It Out! Example 4 Continued

Find the angle measures of *JKLM*.

Step 2 Find the measure of each angle.

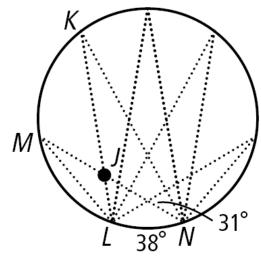
$$m\angle M = 4(16) - 13 = 51^{\circ}$$

 $m\angle K = 33 + 6(16) = 129^{\circ}$
 $m\angle L = \frac{9(16)}{2} = 72^{\circ}$
 $m\angle J = 360^{\circ} - 252^{\circ} = 108^{\circ}$



Lesson Quiz: Part I

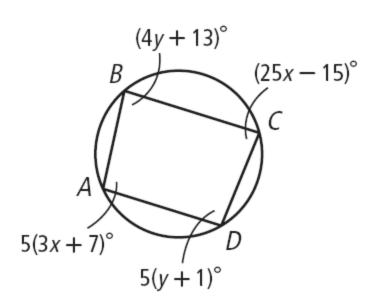
Find each measure.


1. ∠RUS 25°

2. *a* 3

Lesson Quiz: Part II

3. A manufacturer designs a circular ornament with lines of glitter as shown. Find m∠KJN. 130°


4. Find the angle measures of *ABCD*.

$$m\angle A = 95^{\circ}$$

$$m\angle B = 85^{\circ}$$

$$m \angle C = 85^{\circ}$$

$$m \angle D = 95^{\circ}$$

