Warm up

The following table shows the number of people that like a particular fast food restaurant.

 What is the probability that a person likes Wendy's?

7/20

	McD's	BK	Wendy's
Male	20	15	10
Female	20	10	25

2. What is the probability that a person is male **given they like BK**?3/5

Probability

Independent and Dependent Events

Independent Events

A occurring does NOT affect the probability of B occurring.

"AND" means to <u>MULTIPLY</u>!

Independent Event FORMULA

P(A and B) = P(A) • P(B) also known as

$P(A \cap B) = P(A) \bullet P(B)$

A coin is tossed and a 6-sided die is rolled. Find the probability of landing on the head side of the coin and rolling a 3 on the die. P(Head and 3)

$P(A \cap B) = P(A) \bullet P(B)$ $\frac{1}{2} \bullet \frac{1}{6} = \frac{1}{2}$

A card is chosen at random from a deck of 52 cards. It is then replaced and a second card is chosen. What is the probability of choosing a jack and an eight?

P(Jack and 8) P(A \cap B) = P(A) • P(B) $\frac{4}{52} \cdot \frac{4}{52} = \frac{1}{169}$

A jar contains 3 red, 5 green, 2 blue and 6 yellow marbles. A marble is chosen at random from the jar. After replacing it, a second marble is chosen. What is the probability of choosing a green and a yellow marble?

P(Green and Yellow)

$P(A \cap B) = P(A) \bullet P(B) \\ \frac{5}{16} \bullet \frac{6}{16} = \frac{15}{128}$

A school survey found that 9 out of 10 students like pizza. If three students are chosen at random with replacement, what is the probability that all three students like pizza? P(Like and Like and Like)

Dependent Events

A occurring AFFECTS the probability of B occurring

Usually you will see the words "without replacing"

"AND" still means to <u>MULTIPLY</u>!

Dependent Event Formula

$P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$

also known as

$P(A \cap B) = P(A) \circ P(B \mid A)$

A jar contains 3 red, 5 green, 2 blue and 6 yellow marbles. A marble is chosen at random from the jar. A second marble is chosen <u>without</u> replacing the first one. What is the probability of choosing a green and a yellow marble?

P(Green and Yellow)

$P(A \cap B) = P(A) \bullet P(B \mid A)$

16

15

An aquarium contains 6 male goldfish and 4 female goldfish. You randomly select a fish from the tank, <u>do not</u> replace it, and then randomly select a second fish. What is the probability that both fish are male? P(Male and Male)

$P(A \cap B) = P(A) \bullet P(B | A)$ $\frac{6}{10} \cdot \frac{5}{9} = \frac{1}{3}$

A random sample of parts coming off a machine is done by an inspector. He found that 5 out of 100 parts are bad on average. If he were to do a new sample, what is the probability that he picks a bad part and then, picks another bad part if he <u>doesn't replace the first?</u> P(Bad and Bad)

 $P(A \cap B) = P(A) \bullet P(B | A) \\ \frac{5}{100} \bullet \frac{4}{99} = \frac{1}{495}$

Determining if 2 Events are Independent

Determining if Events are Independent

3 Ways to check. We are going to practice one of the ways:

$P(A \cap B) = P(A) \bullet P(B)$

Substitute in what you know and check to see if left side equals right side.

Let event M = taking a math class. Let event S = taking a science class. Then, M and S = taking a math class and a science class.

Suppose P(M) = 0.6, P(S) = 0.5, and P(M and S) = 0.3. Are M and S independent?

$$P(M \cap S) = P(M) \bullet P(S)$$

$$\frac{?}{.3} = .6 \bullet .5$$

$$.3 = .3 \text{ YES!}$$

Conclusion: Taking a math class and taking a science class are independent of each other.

In a particular college class, 60% of the students are female. 50% of all students in the class have long hair. 45% of the students are female and have long hair. Of the female students, 75% have long hair. Let F be the event that the student is female. Let L be the event that the student has long hair. One student is picked randomly.

Are the events of being female and having long hair independent? $D(\Gamma - I) = D(\Gamma)$

$$P(F \cap L) = P(F) \bullet P(L)$$

$$45\% = 60\% \bullet 50\%$$

$$.45 = .60 \bullet .50$$

$$.45 \neq .30 \text{ NO!!!}$$

Conclusion: Being a female and having long hair are not independent.

Homework

Practice Worksheet