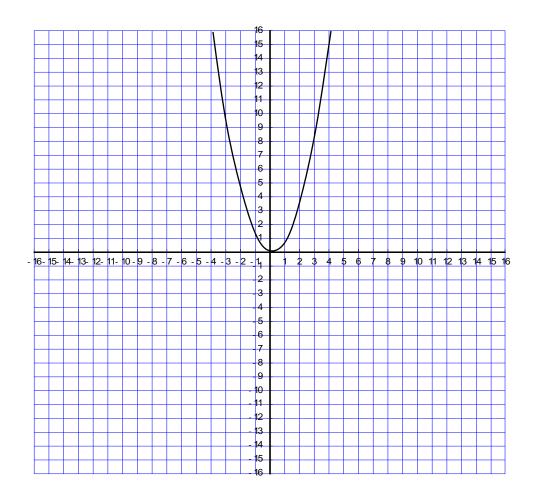
Name: Period: Seat #:


Mathematics III Unit-2 Graphs of Polynomial Functions – Test # 3 B.Thevar/R.Andrews

Direction:

- You can write on the test
- You may use a calculator
- Show your work to get full credit
- Use pencil only

MM3A1.a

- 1. The graph of the basic quadratic function (parabola) $f(x) = x^2$ is given. Then sketch the following graphs using **transformation** of the given basic graph.
 - (a). $g(x) = (x + 5)^{2} + 4$ shift _____units _____ & ____units _____
 - (b). $h(x) = (x 4)^2 4$ shift _____units _____ & ____units _____

MM3A1.b

Polynomial	Standard Form (Highest to lowest	Degree	Leading Coefficient
$f(x) = 3x^2 + x^3 - 5x + 2$		3	1
$g(x) = 5x - 2x^2 + 1$			
$h(x) = x^3 - 3x^2 - 3x^5 - 4$			
$k(x) = 3 + 2x + x^4$			
$J(x) = 1 - x^3$			
	$f(x) = 3x^{2} + x^{3} - 5x + 2$ $g(x) = 5x - 2x^{2} + 1$ $h(x) = x^{3} - 3x^{2} - 3x^{5} - 4$ $k(x) = 3 + 2x + x^{4}$	exponent) $f(x) = 3x^2 + x^3 - 5x + 2$ $f(x) = x^3 + 3x^2 - 5x + 2$ $g(x) = 5x - 2x^2 + 1$ $h(x) = x^3 - 3x^2 - 3x^5 - 4$ $k(x) = 3 + 2x + x^4$ $h(x) = x^3 - 3x^2 - 3x^5 - 4$	exponent)exponent) $f(x) = 3x^2 + x^3 - 5x + 2$ $f(x) = x^3 + 3x^2 - 5x + 2$ 3 $g(x) = 5x - 2x^2 + 1$ $h(x) = x^3 - 3x^2 - 3x^5 - 4$ $k(x) = 3 + 2x + x^4$

2. Write the following polynomial functions in **Standard Form**. Identify the degree and leading coefficient of each polynomial.

MM3A1.c & d

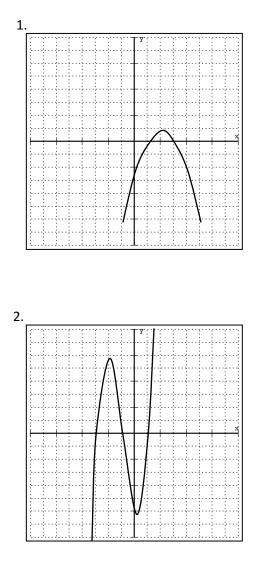
3. Is the **degree** of the polynomial function even or odd? Is the **leading coefficient** positive or negative? Does the graph **rise or fall** on the left or right? Sketch the shape of the graph.

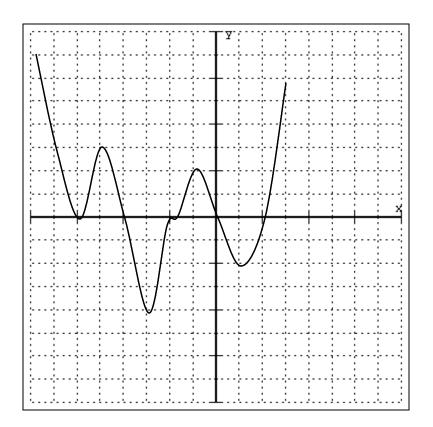
Polynomial function		Degree	Lead Coefficient	End Behavior		
f(x) = ax ⁿ	Graph	Even/Odd	Positive/Ne gative	Left End As $x \rightarrow -\infty$	Right EndAs x $\rightarrow \infty$	
Example. $y = x$		1 odd	1 positive	$y \longrightarrow - \infty$ Falls	y → ∞ Rises	
1. y = 2x ³	$\overset{\uparrow}{\longleftrightarrow}$					
2. y = - 2x ³						
3. y = 3x ⁴	$\overset{\uparrow}{\longleftrightarrow}$					
4. $y = -3x^4$	${\longleftrightarrow}$					

MM3A1.c

4. Using the table below, classify the following polynomial functions by their **symmetry**.

Function	Even, Odd,	Symmetry	Symmetry
	or Neither?	about the	about the
		y- axis?	origin?
Example: $f(x) = x^2 + 2x^1$	Neither	No	No
$g(x) = -2x^2 + x$			
$h(x) = x^3 - x^1$			
$j(x) = -x^3 + 2x^2 + 3x$			
$I(x) = -(x^4 - 5x^2 + 4)$			


MM3A1.d


5. Find the **x-intercepts and y-intercept** for the graph of each equation. Using their x & y intercepts, sketch the graph of each polynomial function.

Polynomial Equation	x-intercepts	y-intercept	Graph
1. Y = 2 (x + 3) (x - 2)			
2. y = -2 (x + 4) (x + 2) (x - 1)			

6. Write the **factored form of the polynomial function** (use x-intercepts) for each graph. Don't forget the **vertical scale factor** or **Lead Coefficient** (use y-intercept).

MM3A1. d

- 7. The above graph is a complete graph of a polynomial function. Answer the following questions by using the **characteristics of polynomial graphs**.
 - a. Is the **degree** of the polynomial function **even or odd**? Why?
 - b. Is the leading coefficient of the polynomial function positive or negative? Why?
 - c. Name the **zeros** of the polynomial function (*multiple zeros write that many times*).
 - d. Write the polynomial function in factored form (include the **multiplicity** of zeros) with a suitable leading coefficient a = 1 or a = -1.
 - Y = e. Find the **degree** of the polynomial function.

```
Degree =
```

- f. Write the **domain and range** of the polynomial function. Domain: Range:
- g. Write the **end behavior** of the polynomial function. Left End: Right End:
- h. How many extreme (**relative maximum or minimum**) values does the graph have? Number of extreme values =
- i. Does the graph have any absolute maximum or minimum value? If yes, what is that value?