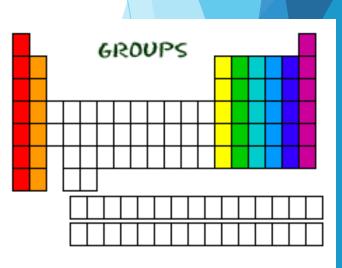
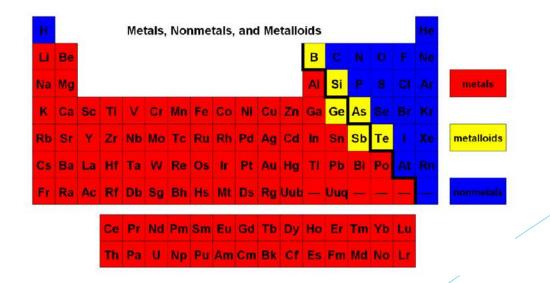
Physical Science Unit 5 Crash Course

Chapter 5 and 6
(The Periodic Table and Chemical Bonds)



A periodic table is an arrangement of elements in columns, based on a set of properties that repeat from row to row.

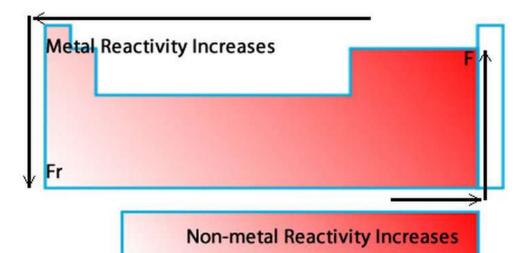


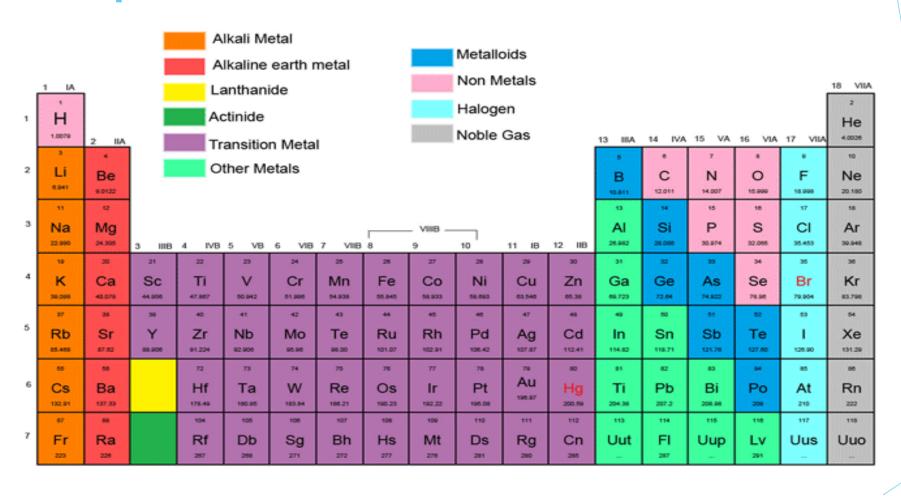
- Mendeleev arranged the elements into rows in order of increasing mass so that elements with similar properties were in the same column.
- He used the properties of elements located near the blank spaces in his table to predict properties for undiscovered elements.
- The close matches between Mendeleev's predictions and the actual properties of new elements showed how useful his periodic table could be.

- In the modern periodic table, elements are arranged by increasing atomic number (number of protons).
- Each row in the table of elements is a period.
- The number of elements per period varies because the maximum number of electrons increases from energy level to energy level.
- Each column on the periodic table is called a group.
- The elements within a group have similar properties.

- The pattern of repeating properties across a period when the elements are arranged in order of increasing atomic number is called the periodic law.
- Atomic mass is a value that depends on the distribution of an element's isotopes in nature and the masses of those isotopes.
- Elements are classified as metals, nonmetals, and metalloids.

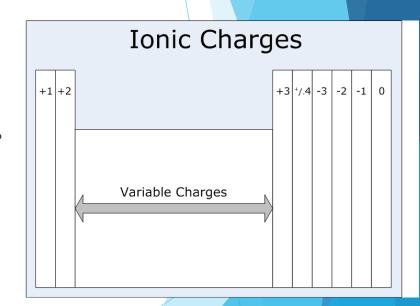
- The majority of the elements on the periodic table are classified as metals.
- Metals are elements that are shiny, good conductors of electric current and heat, solid at room temperature (except mercury), malleable, and ductile (they can be drawn into wires).
- Nonmetals are elements that are poor conductors of heat and electric current, have low boiling points, are brittle, and tend to be gases.


Valence Electrons in Each


- Metalloids are elements with properties that fall between those of metals and nonmetals.
- Across a period from left to right, the elements become less metallic and more nonmetallic in their properties.
- A valence electron is an electron that is in the highest occupied energy level of an atom. These electrons play a key role in chemical reactions.
- Elements in a group have similar properties because they have the same number of valence electrons.

Reactivity increases to the left in a row across the metals and increases down in a group of the metals.

Reactivity increases to the right in a row across the nonmetals (except the noble gases are unreactive) and decreases down a group in the


nonmetals.

57	50	59	60	61	62	63	04	05	00	67	60	60	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24	145	150.36	151.96	157.25	150,93	162,50	164,93	167.26	100.93	173.05	174,97
80	90	91	92	10	94	96	90	97	98	90	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
227	292:04	291.04	238.00	237	244	243	247	247	261	262	257	256	259	262

- When the highest occupied energy level of an atom is filled with electrons, the atom is stable and not likely to react.
- The noble gases have stable electron configurations with eight valence electrons (or two in the case of helium).
- Some elements achieve stable electron configurations through the transfer of electrons between atoms.
- An atom that has a net positive or negative charge is called an ion.

- When an ionic bond is formed, electrons are transferred until each atom has a full outer energy level.
- lonic compounds tend to have high melting points (above 300°C).
- Ionic compounds are poor conductors in the solid state, but they can conduct heat or electricity when they are melted.
- Ionic compounds are brittle, so they shatter when struck by a hammer.
- The properties of ionic compounds can be explained by the strong attractions among ions within a crystal lattice.

A covalent bond is a chemical bond in which two atoms share a pair of valence electrons.

Many nonmetal elements exist as diatomic molecules. Diatomic means two atoms. They

are H_2 , N_2 , O_2 , F_2 , Cl_2 , Br_2 , and I_2 .

atoms

the thickness of the state of the sta

Figure 2.6 Essential Cell Biology, 2/e. (© 2004 Garland Science)

- When naming an ionic compound the name of the metal (cation) does not change and the name of the nonmetal (anion) has the suffix -ide.
- Ex. MgBr₂ = magnesium bromide
- To balance the charges in an ionic compound, you can cross the charges if they are not the same.

$$Fe_{2}^{3+}O_{3}^{2} \rightarrow Fe_{2}O_{3}$$

- Molecular compounds only contain nonmetals.
- The name of the first element is the same. The name of the second element ends in the suffix -ide.
- Prefixes tell the number of atoms of each element. A prefix is not used when the first element only has 1 atom.
- \triangleright Ex. CO₂ = carbon dioxide

```
1 = mono 6 = hexa

2 = di 7 = hepta

3 = tri 8 = octa

4 = tetra 9 = nona

5 = penta 10 = deca
```

- Write the symbols for the elements in the order the elements appear in the name. The prefixes indicate the number of atoms of each element in this molecule.
- Ex: diphosphorus pentoxide = P_2O_5

- In a metal, valence electrons are free to move among the atoms, so the cations are surrounded by a sea of electrons.
- The more valence electrons an atom can contribute to the shared pool, the stronger the metallic bond will be.
- The mobility of electrons within a metal lattice explains the fact that metals are good conductors and malleable.
- An alloy is a mixture of two or more elements that have metallic properties.