

CENTER FOR ELEMENTARY MATHEMATICS AND ECIENCE EDUCATION THE UNIVERSITY OF CHICAGO

Everyday Mathematics Partial-Quotients Division

Partial-quotients is a simpler way to do long division. Many children like partial-quotients because it is easier to understand than some other methods.

Partial-quotients division involves:

- Finding multiples of the divisor;
- Finding partial quotients; and
- Finding the sum of the partial quotients.

Let's use partial-quotients division to solve 296 ÷ 8.First we think about how many [8s] are in 296.It can help to make a list of easy multiples of 8.

$$1 \times 8 = 8$$

$$10 \times 8 = 80$$

$$2 \times 8 = 16$$
 [double 1 × 8]

$$5 \times 8 = 40$$
 [take ½ of 10 × 8]

$$20 \times 8 = 160$$
 [double 10 × 8]

$$50 \times 8 = 400$$
 [solve 10 × (5 × 8)]

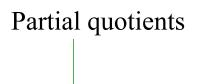
296 is between 160 and 400, so we can stop here.

First we set up the problem.

We will write the partial quotients here.

(Easy Multiples	
	$1 \times 8 = 8$	
	$10 \times 8 = 80$	
	$2 \times 8 = 16$	
	$5 \times 8 = 40$	
	$20 \times 8 = 160$	
	$50 \times 8 = 400$)
\sim		·

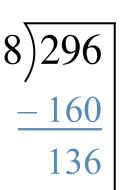
Now we ask: *How many* [8s] are in 296?


8)296

From the list of multiples, we see that there are at least 20 [8s] = 160 in 296.

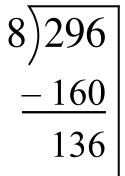
Our first partial quotient is 20.

 Easy Multiples


 $1 \times 8 = 8$
 $10 \times 8 = 80$
 $2 \times 8 = 16$
 $5 \times 8 = 40$
 $20 \times 8 = 160$
 $50 \times 8 = 400$

We record 20 to the right of the problem and $20 \times 8 = 160$ below 296.

Then we subtract to find the difference.


Partial quotients 2()

(Easy Multiples	
	$1 \times 8 = 8$	
	$10 \times 8 = 80$	
	$2 \times 8 = 16$	
	$5 \times 8 = 40$	
	$20 \times 8 = 160$	
	$50 \times 8 = 400$	

Next we ask: *How many* [8s] are in 136?

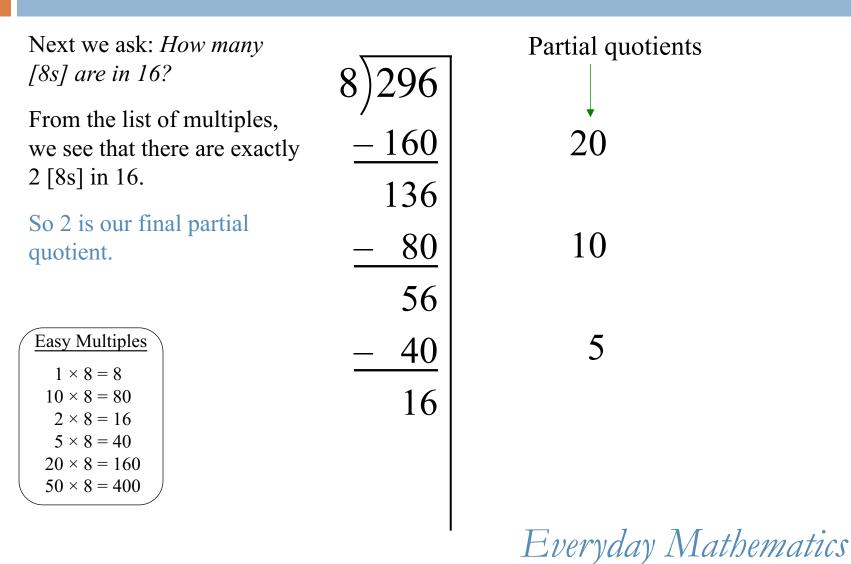
From the list of multiples we see that there are at least 10 [8s] = 80 in 136.

Partial quotients

So 10 is our second partial quotient.

(Easy	/]	M	ult	iples	
	1	×	8	=	8	
	10	×	8	=	80	
	2	×	8	=	16	
	5	×	8	=	40	
	20	×	8	=	160	
	50	×	8	=	400	Ϊ

We record 10 to the right of the problem and $10 \times 8 = 80$ below 136. We subtract to find the difference.


8)296	
<u> </u>	
136	
<u>- 80</u> 56	
56	

Partial quotients

Easy Multiples	5
$1 \times 8 = 8$	
$10 \times 8 = 80$	
$2 \times 8 = 16$	
$5 \times 8 = 40$	
$20 \times 8 = 160$	
$50 \times 8 = 400$	

Partial quotients We ask: *How many [8s] are* in 56? From the list of multiples, 160 20we see that there are at least 5[8s] = 40 in 56. 136 So 5 is our third partial 10 80 quotient. 56 Easy Multiples $1 \times 8 = 8$ $10 \times 8 = 80$ $2 \times 8 = 16$ $5 \times 8 = 40$ $20 \times 8 = 160$ $50 \times 8 = 400$

We record 5 to the right of Partial quotients the problem and $5 \times 8 = 40$ below 56. -16020We subtract to find the difference. 136 10 80 56 Easy Multiples 5 40 $1 \times 8 = 8$ 16 $10 \times 8 = 80$ $2 \times 8 = 16$ $5 \times 8 = 40$ $20 \times 8 = 160$ $50 \times 8 = 400$ Everyday Mathematics

We record 2 to the right of the problem and 2×8 = 16 below 16.

We subtract to find the difference.

Since the difference is 0, there is no remainder.

Partial quotients 160 20136 10 80 56 5 40 16 2 16 0 Everyday Mathematics

Finally, we add the partial quotients to arrive at our result.

 $296 \div 8 = 37$

Add the partial quotients. 20 10 5 + 237

When children use partial-quotients division they practice a variety of skills related to number sense and algebraic reasoning. For example:

- Using equivalent names for numbers;
- Using multiples;
- Practicing doubling and halving;
- Using addition, subtraction, multiplication, and division; and
- Understanding division as a way to answer questions such as "How many 8s are in 296?"