- If a quadrilateral is a parallelogram, then its *opposite sides* are congruent.
- ► PQ≅RS and SP≅QR

• If a quadrilateral is a parallelogram, then its *opposite angles* are congruent.

 $\angle P \cong \angle R \text{ and}$ $\angle Q \cong \angle S$

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary (add up to 180°). $m \angle P + m \angle Q = 180^{\circ}$, $m \angle Q + m \angle R = 180^{\circ}$, $m \angle R + m \angle S = 180^{\circ}$, $m \angle S + m \angle P = 180^{\circ}$

Р

If a quadrilateral is

 a parallelogram,
 then its diagonals
 bisect each other.

 QM ≅ SM and
 PM ≅ RM

Ex. 1: Using properties of Parallelograms

F

- FGHJ is a parallelogram. Find the unknown length. Explain your reasoning.
 - a. JH
 - b. JK

Ex. 1: Using properties of Parallelograms

F

- FGHJ is a parallelogram. Find the unknown length. Explain your reasoning.
 - a. JH
 - b. JK

SOLUTION: a. JH = FG Opposite sides of a \square are \cong . JH = 5 Substitute 5 for FG.

Ex. 1: Using properties of Parallelograms

F

- FGHJ is a parallelogram. Find the unknown length. Explain your reasoning.
 - a. JH
 - b. JK

SOLUTION: a IH = FG Or

a. JH = FG Opposite sides of a \square are \cong . JH = 5 Substitute 5 for FG.

- b. JK = GK Diagonals of a bisect each other.
 - JK = 3 Substitute 3 for GK

TRY YOURSELF: 9/29/15

PQRS is a parallelogram. Find the angle measure. *a.* $m \angle R$ *b.* $m \angle Q$

 $m \angle R = 70^{\circ}$ Substitute 70° for $m \angle P$.

Ex. 5: Proving Theorem 6.2			
Given: ABCD is a parallelogram. Prove AB \cong CD, AD \cong CB.	C		
1.ABCD is a \square .2.Draw BD.3.AB $\parallel CD, AD \parallel CB.$ 4. $\angle ABD \cong \angle CDB, \angle ADB \cong \angle CBD$ 5. $DB \cong DB$ 6. $\triangle ADB \cong \triangle CBD$ 7. $AB \cong CD, AD \cong CB$	1. Given		

>

Ex. 5: Proving Theorem 6.2				
Given: ABCD is a parallelogram. Prove AB \cong CD, AD \cong CB.		C		
1.	ABCD is a \Box .	1.	Given	
2.	Draw BD.	2.	exists exactly one line.	
З.	$AB \parallel CD, AD \parallel CB.$			
4.	$\angle ABD \cong \angle CDB, \ \angle ADB \cong \angle CBD$			
5.	$DB \cong DB$			
6.	$\Delta ADB \cong \Delta CBD$			
7.	$AB \cong CD, AD \cong CB$			

Ex Giv Prov	A. 5: Proving Theorem en: ABCD is a parallelogram. we AB \cong CD, AD \cong CB.	m 6	.2 A B C C
1. 2.	ABCD is a <i>□</i> . Draw BD.	1. 2.	Given Through any two points, there
3.	$\mathbf{AB} \parallel CD, AD \parallel CB.$	3.	exists exactly one line. Definition of a parallelogram
4.	$\angle ABD \cong \angle CDB, \ \angle ADB \cong \angle CBD$		
5.	$DB \cong DB$		
6.	$\Delta ADB \cong \Delta CBD$		
7.	$AB \cong CD, AD \cong CB$		

Ex Give Prov	A. 5: Proving Theore en: ABCD is a parallelogram. we AB \cong CD, AD \cong CB.	em 6	5.2 A B C C
1. 2.	ABCD is a <i>□</i> . Draw BD.	1. 2.	Given Through any two points, there exists exactly one line.
3. 4. 5. 6. 7.	$AB \parallel CD, AD \parallel CB.$ $\angle ABD \cong \angle CDB, \angle ADB \cong \angle$ CBD $DB \cong DB$ $\triangle ADB \cong \triangle CBD$ $AB \cong CD, AD \cong CB$	3. 4.	Definition of a parallelogram Alternate Interior ∠s Thm.

E Gi Pr	Ax. 5: Proving Theorem ven: ABCD is a parallelogram. ove $AB \cong CD$, $AD \cong CB$.	m 6	5.2 A B C C
1.	ABCD is a \Box .	1.	Given
2.	Draw BD.	2.	Through any two points, there exists exactly one line.
3	$AB \parallel CD \mid AD \parallel CB$	3.	Definition of a parallelogram
<i>4</i> .	$\angle ABD \cong \angle CDB, \ \angle ADB \cong \angle CBD$	4.	Alternate Interior ∠s Thm.
5.	$DB \cong DB$	5.	Reflexive property of congruence
6.	$\triangle ADB \cong \triangle CBD$		
7.	$AB \cong CD, AD \cong CB$		

Ex. 5: Proving Theore Given: ABCD is a parallelogram. Prove $AB \cong CD$, $AD \cong CB$.	em 6.2
1. ABCD is a \Box .	1. Given
2. Draw BD.	2. Through any two points, there exists exactly one line.
3. $AB \parallel CD \mid AD \parallel CB$	3. Definition of a parallelogram
4. $\angle ABD \cong \angle CDB, \angle ADB \cong \angle CBD$	4. Alternate Interior \angle s Thm.
5. $DB \cong DB$	5. Reflexive property of congruence
$6. \qquad \Delta ADB \cong \Delta CBD$	6. ASA Congruence Postulate
7. $AB \cong CD, AD \cong CB$	

Ex Give Prov	A. 5: Proving Theorem en: ABCD is a parallelogram. we AB \cong CD, AD \cong CB.	m 6	.2 A B C C
1.	ABCD is a \Box .	1.	Given
2.	Draw BD.	2.	Through any two points, there exists exactly one line.
3.	$AB \parallel CD, AD \parallel CB,$	3.	Definition of a parallelogram
4.	$\angle ABD \cong \angle CDB, \ \angle ADB \cong \angle CBD$	4.	Alternate Interior ∠s Thm.
5.	$DB \cong DB$	5.	Reflexive property of congruence
6.	$\triangle ADB \cong \triangle CBD$	6.	ASA Congruence Postulate
7.	$AB \cong CD, AD \cong CB$	7.	CPCTC