Name:			Period		GP
		UNIT 12: S	IMILARITY		
I can define, ide	entify and illustrate	the following ter	ms:		
Similarity	Image		Ratio	Similarity rat	io
Dilation	Similarity	Statement	Proportion	AA	
Scale Factor	Scale Dra	wing	Cross products	SAS	
Pre Image	Geometri Dates, assignm		Indirect measurem eject to change withou		
	Monday	Tuesday	Block Day	Friday	
	7-1 Ratios and Proportions	27 7-2 Similar Polygons	QUIZ 1 7-3 Triangle Similarity	30 Proofs Practice	
	3 7-4 Applications	4 7-5 Proportional Relationships	5/6 8-1 Geometric Mean	7 QUIZ 2	
	7-6 Dilations & Similarity in the Coordinate Plane	11 Review	12/13 TEST 12	14 Semester Review	
Monday, 11/2	6				
7-1: Ratio and F	Proportion				
□ I can w	rite a ratio.				
☐ I can so	olve a linear proporti	on.			
☐ I can so	olve a quadratic prop	ortion.			
PRACTICE: Pg	458 #8-15, 24-26, 33	1-34, 41, 43			
Tuesday, 11/2	7				
7-2: Similar Poly	ygons				
☐ I can us	se the definition of s	imilar polygons to	determine if two	polygons are similar.	
☐ I can de	etermine the similari	ty ratio between	two polygons.		
	465 #7-17, 19-20, 23	•	. ,6		
	1/28 or Thursday, 1	1/29			
7-3: Triangle Sir	milarity		→ QUIZ 1:	7-1 & 7-2	
☐ I can us	se the triangle simila	rity theorems to	determine if two ti	riangles are similar.	
□ I can us	se proportions in sim	ilar triangles to s	olve for missing sid	des.	
☐ I can set up and solve problems using properties of similar triangles.					
☐ I can pr	ove triangles are co	ngruent in a two-	column proof.		
PRACTICE: Pg	474 #1-4, 11-14, 16,	20-24			

Proofs: p 474 #7, 8, 17, 18

Friday, 11/30
Proofs Practice
☐ I can prove triangles are congruent in a two-column proof.
PRACTICE: Similarity Proofs Worksheet
Monday, 12/3
7-4: Applications and Problem Solving
☐ I can use the triangle proportionality theorem and its converse.
☐ I can use the Triangle Angle Bisector Theorem.
PRACTICE: Pg 485 #8-20, 25, 28, 34
Tuesday, 12/4
7-5: Using Proportional Relationships
☐ I can use proportions to determine if a figure has been dilated.
☐ I can use ratios to make indirect measurements.
PRACTICE: Pg 491 #2, 10-12,18-19, 24-26, 28, 34
Wednesday, 12/5 or Thursday, 12/6
Geometric Mean
☐ I can use geometric mean.
PRACTICE: Geometric Mean Worksheet
F.O.L. 40/7
Friday, 12/7
→ QUIZ 2: Similar Triangles (7-3 through 7-5 and Geometric Mean)
☐ I can demonstrate my ability on all previously learned material.
Monday, 12/10
7-6: Dilations & Similarity in the Coordinate Plane
☐ I can use coordinate proof to prove figures similar.
☐ I can apply similarity in the coordinate plan.
PRACTICE: Pg 498 #4-7, 11-14, 21-24
Tuesday 12/11
Tuesday, 12/11 Review

Wednesday, 12/12 or Thursday, 12/13

→ Test 12: Similarity

Notes: Similar Figures

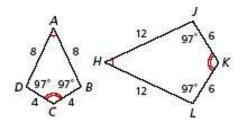
What does it mean to be similar?

What do similar figures and congruent figures have in common?

What is different about similar figures and congruent figures?

Example: Identify the pairs of congruent angles and proportional sides in the following figure.

∡A ≅ ____

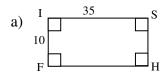

<u>AB</u> ~ _____

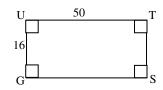
∡B ≅ _____

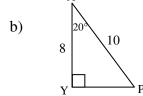
<u>AD</u> ~ _____

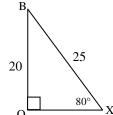
∠K ≅ _____ ∠L ≅ _____ <u>JK</u> ~ _____

<u>KL</u> ~


A similarity statement can be written to show that polygons are similar. Ex: $\triangle ABC \sim \triangle DEF$


Example: Write a similarity statement for the figures above.


Example: Write a similarity ratio for the figures above.


Example) Determine if each pair of polygons are similar. If so, write the similarity statement and the similarity ratio.

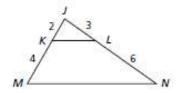
A B_{N}



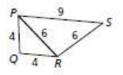
Notes: Similar Triangles

There are 3 ways you can prove triangles similar WITHOUT having to use all sides and angles.

Angle- Angle Similarity (AA~) – If two angle of one triangle are ______ to two corresponding angles of another triangle, then the triangles are similar


Side- Side Similarity (SSS~) – If the three sides of one triangle are ______ to the three corresponding sides of another triangle, then the triangles are similar.

Side-Angle- Side Similarity (SAS~) – If two sides of one triangle are _______ to two corresponding sides of another triangle and their included angles are ______, then the triangles are similar.

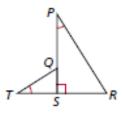


Examples: Determine if the triangles are similar. If so, tell why and write the similarity statement and similarity ratio.

Similar: Y or N Why:_____
Similarity Statement:___~

Similarity Ratio:

Similar: Y or N Why:_____

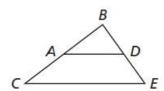

Similarity Statement:___~

Similarity Ratio:_____

Similar: Y or N Why:_____
Similarity Statement:___~
Similarity Ratio:____

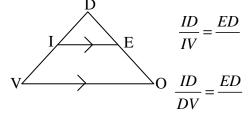
Similar: Y or N Why:_____

Similarity Statement:__~

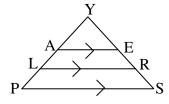

Similarity Ratio:____

Given: BC = 2(BA)

BE = 2(BD)


Prove: $\triangle BDA \sim \triangle BEC$

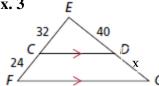
Proof:



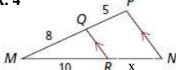
Notes: Properties of Similar Triangles

Ex. 1

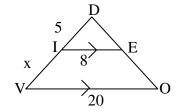
Ex. 2

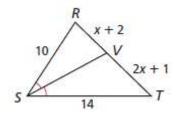


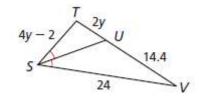
$$\frac{AY}{LA} = \frac{YE}{YK}$$
 $\frac{AY}{YK}$


$$\frac{LY}{RI} = \frac{PA}{CR} = \frac{AY}{RC}$$

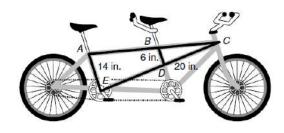
Now that you can write the proportions, you can solve problems.


Ex. 3

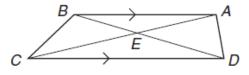

Ex. 4


Ex. 5

Ex. 6 Find RV

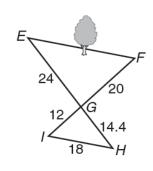


Ex. 7 Find y


Worksheet: Proving Triangles are Similar (use a separate sheet of paper)

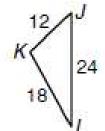
Given: AE is parallel to BD Prove: $\triangle CBD \sim \triangle CAE$.

Given: AB | DC

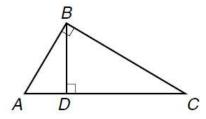

Prove: △AEB ~ △CED

Given: 10(GH) = 6(EG)

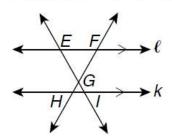
10(IG) = 6(EG)


Prove: $\angle E \cong \angle H$

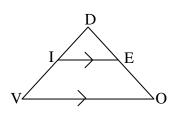
Given: \triangle GHI and \triangle JKL


Verify: \triangle GHI \sim \triangle JKL in a

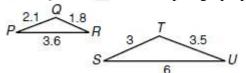
paragraph proof


Given: right $\triangle ABC$; $\overline{BD} \perp \overline{AC}$

Prove: $\triangle ABC \sim \triangle ADB$

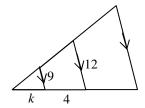

Given: ℓ | k

Prove: $\triangle EFG \sim \triangle IHG$


Given: IE is parallel to VO

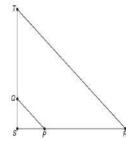
Prove: $\frac{ID}{IV} = \frac{ED}{EO}$

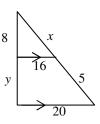
Given:△PQR and △UTS


Verify: \triangle PQR \sim \triangle UTS in a paragraph proof

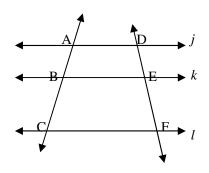
Proportional Relationships – Extra Practice

Solve for the variable in each figure.


$$x = \underbrace{\qquad \qquad \qquad }_{5} \underbrace{\qquad \qquad }_{3y-2}$$



3.
$$SQ = x$$
; $ST = 22$;


$$SP = 12$$
; $PR = 4x + 8$

x = _____

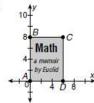
Given: $j \parallel k \parallel l$

5.
$$AC = 9$$
; $BC = 6$; $DF = 15$

EF = _____

7.
$$BC = x + 2$$
; $BA = 9$; $EF = x + 3$; $ED = 12$

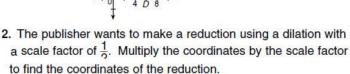
6.
$$AB = 5y$$
; $DE = 2y$; $EF = 12$


BC = _____

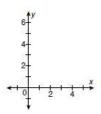
8.
$$AC = 3x$$
; $BC = 16$; $EF = 20$; $FD = 4x - 2$

 $x = ___; AC = ___; FD = ___$

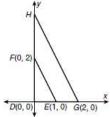
Dilations & Similarity in the Coordinate Plane Notes

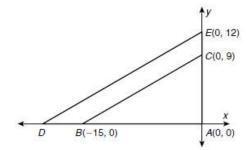

A publisher is preparing the marketing plan for a new book. The actual cover of the book measures 6 inches by 8 inches, as shown in the figure. The publisher needs to make a reduced image of the book cover for advertisements. Complete Exercises 1-4 to draw the outline of the reduced cover.

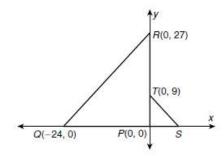
1. Use the figure to find the coordinates of each vertex.


A(4)
0.000	20,00	9750
02507		204

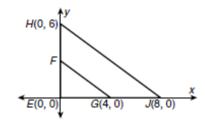
B()
3.00%	1000	

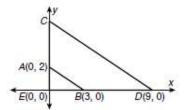

A'I		1
A (,	/

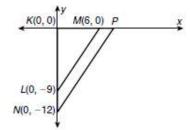

3. Plot the coordinates of the reduction and draw the new outline of the book cover.

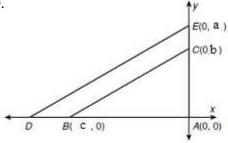


In the figure, $\triangle DGH$ is a dilation image of $\triangle DEF$.


4. Find the scale factor and the coordinates of H.

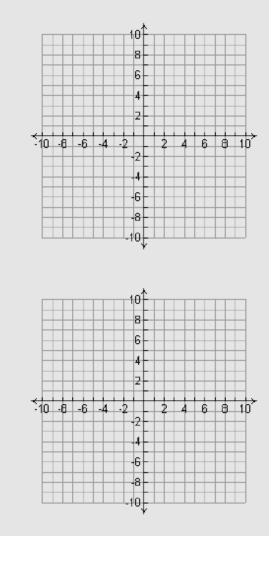



- 5. Given that $\triangle ABC \sim \triangle ADE$, find the scale factor and the coordinates of D.
- 6. Given that $\triangle PQR \sim \triangle PST$, find the scale factor and the coordinates of S.
- 7. $\triangle FEG \sim \triangle HEJ$. Find the coordinates of F and the scale factor.


8. Given that $\triangle AEB \sim \triangle CED$, find the coordinates of C and the scale factor.

Given that \(\triangle LKM \simeq \triangle NKP\), find the coordinates of P and the scale factor.


10.



Given that $\triangle ABC \sim \triangle ADE$, find coordinates of D.

11. **Given:** E(-2, -6), F(-3, -2), G(2, -2), H(-4, 2), and J(6, 2).

Prove: $\Delta EHJ \sim \Delta EFG$.

Notes: Geometric Mean

Sequences:

Arithmetic: 2, 5, 8, 11, 14, ____, ____ What is the common difference?

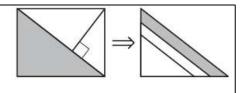
Geometric: 2, 6, 18, 54, 162, _____, ____, What is the common factor?

- 1. Starting with the number 1 and using a factor of 4, create 5 terms of a geometric sequence.
- 2. Starting with the number 5 and using a factor of 3, create 5 terms of a geometric sequence.
- 3. In the geometric sequence 2, _____, 72, 432, .Find the missing term.
- 4. In the geometric sequence 6, _____, 24,... Find the missing term.

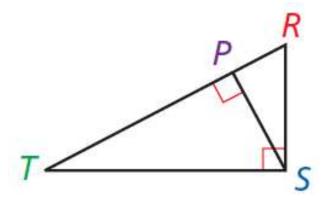
A term between two terms of a geometric sequence is the ______ of the two terms.

The geometric mean of two positive numbers is the positive square root of their products. For $\frac{a}{x} = \frac{x}{b}$, the x is the geometric mean.

Examples: Find the geometric mean of the given numbers.

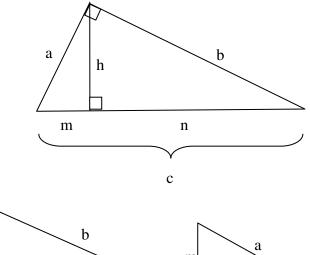

a. 4 and 9

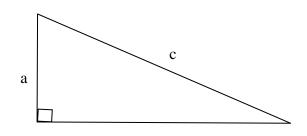
b. 6 and 15


c. 2 and 8

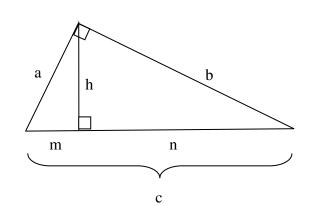
The altitude to the hypotenuse of a right triangle forms two triangles that are ______ to each other and to the original triangle. In other words, there are _____ similar triangles: a small one, a medium one, and a large one.

Take a rectangular sheet of paper and draw the segments shown at right. Cut out the three triangles and align them as shown. If your work is accurate, the triangles should appear similar. In fact, you have demonstrated the following important theorem about right triangles.




1. Draw the three proportional triangles from this sketch:

Examples:


Ex 1: m = 2, n = 10, $h = _____$

 $\begin{array}{c|c} & & & \\ & & \\ h & & \\$

Ex 2: m = 2, n = 10, $b = _____$

You draw the similar triangles:

1.
$$c = 12$$
; $m = 6$; $a = ?$

2.
$$m = 4$$
; $h = 25$; $n = ?$

3.
$$c = 12$$
; $m = 4$; $h = ?$

What's the next number in the sequence? 1.1, 2.2, 4.4, 8.8, _____

What's the common ratio of the sequence(s) below?

3 Write two possible answers for the geometric mean of -32 and -2?

For questions 1-5, find the Geometric Mean of the following:

 2 and 50 	
------------------------------	--

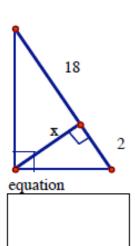
equation	

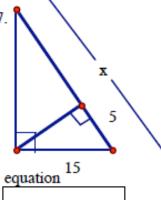
2. 50 and 1250

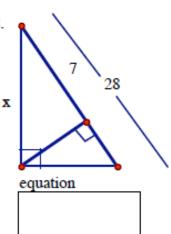
equation	

3. 5 and 45

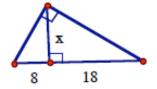
equation	

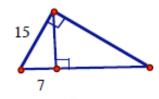

equation	


5. 6.4 and 8.8

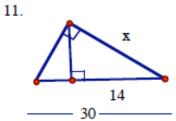

equation	

For questions 6- 15, solve for the missing value(s).


6.

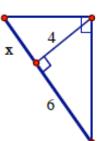


9.

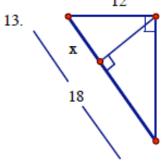


10.

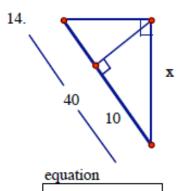
equation


equation

equation


x = ____

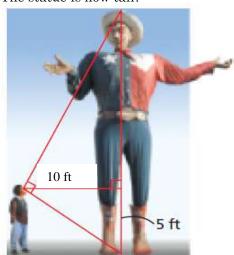
12.


equation

x = _____

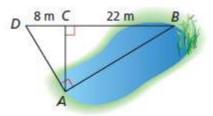
equation

x = _____



x = _____

x = _____


x = _____

The statue is how tall?

Not drawn to scale

Find the length of *AD*.

