Aquatic Biodiversity – Chapter 8 PART 1: OVERVIEW (8.1)

8-1 What Is the General Nature of Aquatic Systems?

- Concept 8-1A Saltwater and freshwater aquatic life zones cover almost three-fourths of the earth's surface with oceans dominating the planet.
- Concept 8-1B The key factors determining biodiversity in aquatic systems are temperature, dissolved oxygen content, availability of food and availability of light and nutrients necessary for photosynthesis.

The Ocean Planet

Land-ocean hemisphere

@ Brooks/Cole, Cengage Learning

Most of the Earth Is Covered with Water (1)

- Saltwater (71% earth's surface)
 - Global ocean divided into 4 areas
 - Atlantic
 - Pacific*
 - Arctic
 - Indian
- Freshwater (2.2% earth's surface)

Most of the Earth Is Covered with Water (2)

- Aquatic life zones
 - Saltwater/Marine
 - Oceans and estuaries
 - Coastlands and shorelines
 - Coral reefs
 - Mangrove forests
 - Freshwater
 - Lakes
 - Rivers and streams
 - Inland wetlands

Distribution of the World's Major Saltwater and Freshwater Sources

Benefits of Oceans

- Biological productivity
- Climate regulation
- Role in biogeochemical cycles
- Biodiversity
- Goods & Services
 - Fish
 - Shellfish
 - Minerals
 - Recreation
 - Transportation Routes

Most Aquatic Species Live in Top, Middle, or Bottom Layers of Water (1)

Plankton (weakly swimming/free floating)

- Phytoplankton
- Zooplankton
 - Single celled to jellyfish
- Ultraplankton
 - Photosynthetic bacteria 70% of oceans NPP

Nekton

• Strongly swimming consumers

Benthos

- Bottom dwellers
- Decomposers

Most Aquatic Species Live in Top, Middle, or Bottom Layers of Water (2)

- Key factors in the distribution of organisms
 - Temperature
 - Dissolved oxygen content
 - Availability of food
 - Availability of light and nutrients needed for photosynthesis in the euphotic (photic) zone
 - Turbidity
 - Nutrients
 - Plentiful in streams, lake edges & coastlines
 - Nitrates & Phosphates are limiting factors in open ocean

Aquatic Biodiversity – Chapter 8 PART 2: FRESHWATER (8.4)

8-4 Why Are Freshwater Ecosystems Important?

 Concept 8-4 Freshwater ecosystems provide major ecological and economic services and are irreplaceable reservoirs of biodiversity.

Water Stands in Some Freshwater Systems and Flows in Others (1)

- Standing (lentic) bodies of freshwater
 - Lakes
 - Ponds
 - Inland wetlands
- Flowing (lotic) systems of freshwater
 - Streams
 - Rivers

Major Ecological and Economic Services Provided by Freshwater Systems

Cole, Cengage Learning

Water Stands in Some Freshwater Systems and Flows in Others (2)

Formation of lakes

- Glaciations
- Crustal displacement
- Volcanic activity
- Four zones based on depth and distance from shore
 - Littoral zone
 - Limnetic zone
 - Profundal zone
 - Benthic zone

Distinct Zones of Life in a Fairly Deep Temperate Zone Lake

Lake zonation

-The **littoral** zone is the near shore area where sunlight penetrates all the way to the sediment and allows aquatic plants to grow. The **<u>euphotic zone</u>** is the layer from the surface down to the depth where light levels become too low for **<u>photosynthesizers</u>**. In most lakes, the sunlit euphotic zone occurs within the **<u>epilimnion</u>**.

Animation: Lake turnover

process of a **lake's** water turning over from top (epilimnion) to bottom (hypolimnion).

http://faculty.gvsu.edu/videticp/stratification.htm

Some Lakes Have More Nutrients Than Others

Oligotrophic lakes

Low levels of nutrients and low NPP

Eutrophic lakes

High levels of nutrients and high NPP

Mesotrophic lakes

 Cultural eutrophication leads to hypereutrophic lakes

The Effect of Nutrient Enrichment on a Lake

@ Brooks/Cole, Cengage Learning

Cultural Eutrophication

Homework Instructions

- Fold your paper into 6 equal sections.
- You will create a storyboard/cartoon depicting the steps that lead to cultural eutrophication (hypereutrophication)

- You will first decide on the correct sequence of events.
- Next, you will write these events in your sections (left to right, top row... then bottom)
- Finally, you should draw (very simple) pictures to represent each stage.

Cultural Eutrophication – Put these in order

Aerobic bacteria (decomposers) break down dead organisms.

_ Uninhibited plant and algae growth.

Fish die.

Excessive nutrients are added to the system.

Oxygen levels fall.

Producers run out of nutrients and die.

Animation: Trophic natures of lakes

http://rhsweb.org/jstewart/assignments/wwwAPES/Semester1 /Ch7/Animations/trophic_lakes.html

Aquatic Biodiversity – Chapter 8 PART 2B: FLOWRING FRESHWATER (8.4)

Three Zones in the Downhill Flow of Water

Freshwater Streams and Rivers Carry Water from the Mountains to the Oceans

Three aquatic life zones

- Source zone
 - Shallow, cold, clear, swift
 - High DO
 - Low nutrients & producers

Transition zone

- Wider, deeper, warmer, slower
- More turbid (sediment)
- Lower DO

Floodplain zone

- Wide, deep, warm, very slow
- Low DO
- Silt, sediment

8-5 How Have Human Activities Affected Freshwater Ecosystems?

 Concept 8-5 Human activities threaten biodiversity and disrupt ecological and economic services provided by freshwater lakes, rivers, and wetlands.

Case Study: Dams, Deltas, Wetlands, Hurricanes, and New Orleans

- Coastal deltas, mangrove forests, and coastal wetlands: natural protection against storms
- Dams and levees reduce sediments in deltas: significance?
- New Orleans, Louisiana, and Hurricane Katrina: August 29, 2005
- Global warming, sea rise, and New Orleans

New Orleans, Louisiana, (U.S.) and Hurricane Katrina

@ Brooks/Cole, Cengage Learning

Projection of New Orleans if the Sea Level Rises 0.9 Meter

Freshwater Inland Wetlands Are Vital Sponges (1)

- Inland Wetland: lands covered with water all or part of the year
 - Marshes
 - Grasses, reeds, few trees
 - Swamps
 - Trees & shrubs
 - Prairie potholes
 - Floodplains
 - Arctic tundra in summer

Freshwater Inland Wetlands Are Vital Sponges (2)

- Provide free ecological and economic services
 - Filter and degrade toxic wastes
 - Reduce flooding and erosion
 - Help to replenish streams and recharge groundwater aquifers
 - Biodiversity
 - Food and timber
 - Recreation areas

Human Activities Are Disrupting and Degrading Freshwater Systems

- Impact of dams and canals on rivers
 - Alter or destroy habitats
- Impact of flood control levees and dikes along rivers
 - Reduce healthy function of wetlands
- Impact of pollutants from cities and farms on rivers
 - Eutrophication
- Impact of drained wetlands
 - Flood & drought

Case Study: Inland Wetland Losses in the United States

Half the U.S.'s natural wetlands have been lost

- Growing crops (80%)
- Mining
- Forestry
- Oil and gas extraction
- Building highways
- Urban development

Aquatic Biodiversity – Chapter 8 PART 4: MARINE LIFE ZONES (8.2 & 8.3)

Major Ecological and Economic Services **Provided by Marine Systems**

NATURAL CAPITAL

Marine Ecosystems

Ecological Services

Climate moderation

CO₂ absorption

Nutrient cycling

Waste treatment

Reduced storm impact (mangroves, barrier islands, coastal wetlands)

Habitats and nursery areas

Genetic resources and biodiversity

Scientific information

C Brooks/Cole, Cengage Learning

Economic Services

Food

Animal and pet feed

Pharmaceuticals

Harbors and transportation routes

Coastal habitats for humans

Recreation

Employment

Oil and natural gas

Minerals

Building materials

Goods & Services valued at over \$12 trillion per year!

Oceans Provide Important Ecological and Economic Resources

- Reservoirs of diversity in three major life zones
 - Coastal zone
 - Usually high NPP
 - Open sea
 - Ocean bottom

Natural Capital: Major Life Zones and Vertical Zones in an Ocean

Coastal Zones

- Coastal zone
 - Warm, <u>nutrient rich</u>, shallow, <u>ample sunlight</u>
 - From high tide to edge of continental shelf
 - Less than 10% area, over 90% of species
- Estuaries
- Coastal Wetlands
- Tidal Zones

Estuaries and Coastal Wetlands Are Highly Productive (1)

Estuaries and coastal wetlands

- Areas where the river meets the sea brackish
- River mouths
- Inlets
- Bays
- Sounds
- Salt marshes (temperate)
- Mangrove forests (tropical)

Seagrass Beds

- Support a variety of marine species
- Stabilize shorelines
- Reduce wave impact

Some Components and Interactions in a Salt Marsh Ecosystem in a Temperate Area

View of an Estuary from Space

@ Brooks/Cole, Cengage Learning

Estuaries and Coastal Wetlands Are Highly Productive (2)

- Important ecological and economic services
 - Coastal aquatic systems maintain water quality by filtering
 - Toxic pollutants
 - Excess plant nutrients
 - Sediments
 - Absorb other pollutants
 - Provide food, timber, fuelwood, and habitats
 - Reduce storm damage and coast erosion
 - Loss of mangroves leads to salt water intrusion

Mangrove Forest in Daintree National Park in Queensland, Australia

@ Brooks/Cole, Cengage Learning

Rocky and Sandy Shores Host Different Types of Organisms

- Tides caused by pull of moon and sun
 - Usually about every 6 hours
- Intertidal zone
 - Rocky shores
 - Sandy shores/barrier beaches
 - Different from barrier islands
- Organism adaptations necessary to deal with daily salinity, moisture & temperature changes
 - Burrow or hide in shells
- Importance of sand dunes in erosion prevention

Living between the Tides

Brooks/Cole, Cengage Learning

Primary and Secondary Dunes

@ Brooks/Cole, Cengage Learning

Coral Reefs Are Amazing Centers of Biodiversity

- Marine equivalent of tropical rain forests
- Habitats for one-fourth of all marine species

The Open Sea and Ocean Floor Host a Variety of Species

- Vertical zones of the open sea
 - Major difference <u>Sunlight</u>
 - Euphotic zone
 - 40% of world's photosynthesis
 - Bathyal zone
 - Abyssal zone: receives marine snow
 - Deposit feeders (mud)
 - Filter feeders (water)
 - Upwellings
- Primary productivity and NPP

Natural Capital: Major Life Zones and Vertical Zones in an Ocean

The Euphotic Zone (Sunlight Zone)

- Home to a wide variety of species
 - sharks, tuna, mackerel, jellyfish, sea turtles, seals and sea lions and stingrays.
- Water temperatures are relatively warm
- Adaptations
 - Counter-shading
 - Some animals are dark on the top and lighter on their undersides

The Bathyal Zone (Twilight Zone)

- Animals must be able to survive cold temperatures, an increase in water pressure and dark waters.
 - Octopus, squid, and the hatchet fish are some of the animals that can be found in this zone.
- Adaptations
 - Thin bodies that help them hide from predators.
 - Red or black in color to blend in with the dark water
 - Large eyes that help them see in the dark waters.

The Abyss (Midnight Zone)

- Cold and completely dark with intense water pressure
- Adaptations
 - Some animals don't have eyes.
 - Most of the fish in this zone don't chase their food.
 - They either stalk it or wait for it to float or swim by.
 - Bioluminescence animals that make their own light

Colobonema

Animation: Ocean provinces

https://smartsite.ucdavis.edu/access/content/user/00002950/ bis10v/media/ch31/ocean_zones.swf

Human Activities Are Disrupting and Degrading Marine Systems

- Human activity heavily affects 41% of the ocean
- No ocean area is completely unaffected
- In 2006, 45% of the world's population lived on or near the coast

Human Activities Are Disrupting and Degrading Marine Systems

- Major threats to marine systems
 - Coastal development
 - Overfishing
 - Runoff of nonpoint source pollution
 - Point source pollution
 - Habitat destruction
 - Introduction of invasive species
 - Climate change from human activities
 - Pollution of coastal wetlands and estuaries