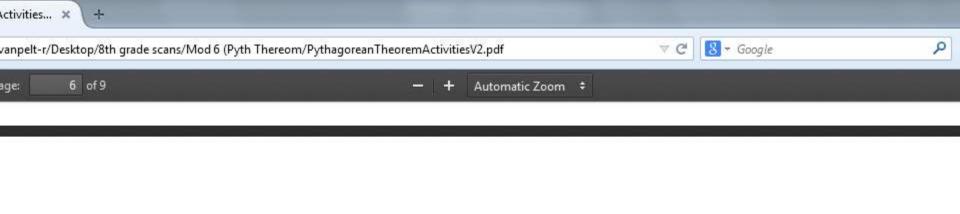

Warm UP

Get a slip of paper from the chair. Follow the directions and answer the questions.



Lesson 💼

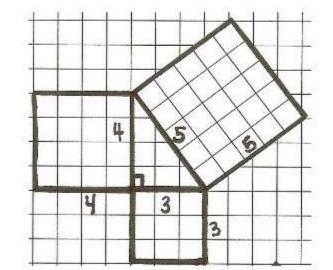
Main n

Back

Next >

Name:

Fill out this sheet and be ready to report back to the class.

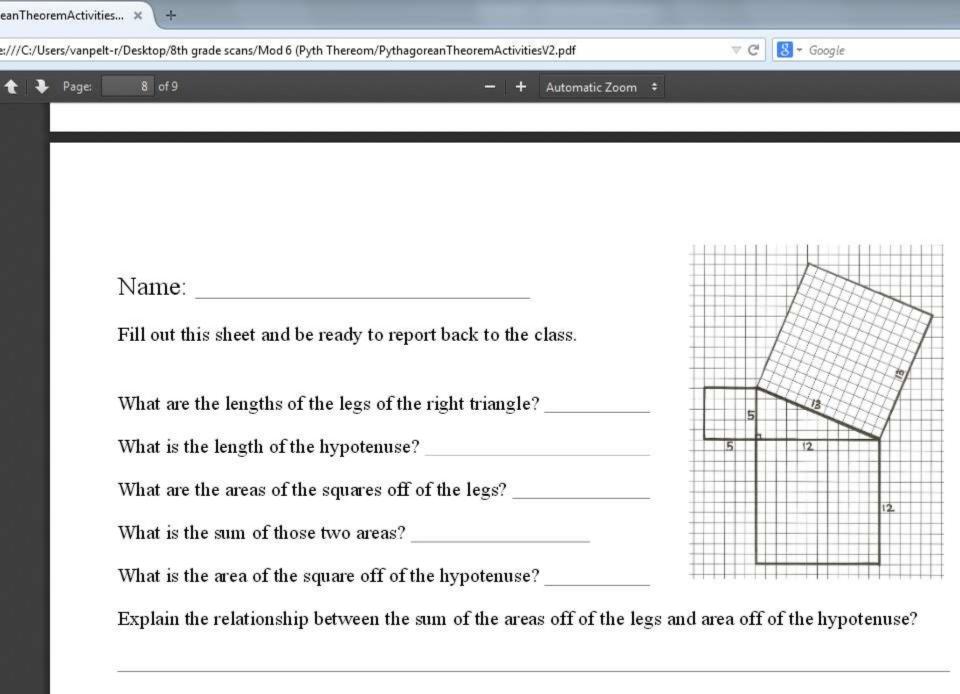

What are the lengths of the legs of the right triangle?

What is the length of the hypotenuse? _____

What are the areas of the squares off of the legs? _____

What is the sum of those two areas? _____

What is the area of the square off of the hypotenuse? _____



Explain the relationship between the sum of the areas off of the legs and area off of the hypotenuse?

Do you think all right triangles will have lengths that are integers? Explain.

npelt-r/Desktop/8th grade scans/Mod 6 (Pyth Thereom/PythagoreanTheoremAct	ivitiesV2.pdf	▼ C Google	
e: 7 of 9 —	+ Automatic Zoom ÷		
Nome			
Name:			
Fill out this sheet and be ready to report back to t	he class.		XX
			X
		6 00	XX
What are the largethy of the lasy of the wight twing	1-9		X)
What are the lengths of the legs of the right triang	(ie?	6 8	Ŷ
What is the length of the hypotenuse?			
What are the areas of the squares off of the legs?			8
What is the sum of those two areas?			
what is the sum of mose two areas?			
What is the area of the square off of the hypotenu	se?		
Explain the relationship between the sum of the a		1	

Do you think all right triangles will have lengths that are integers? Explain.

Do you think all right triangles will have lengths that are integers? Explain.

Proof Video

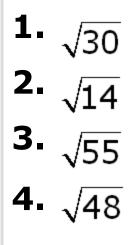
Lesson 💼

Main n

Next >

< Back

© HOLT McDOUGAL, All Rights Reserved


Review Find each value to the nearest tenth.

Lesson 💼

Main 💼

Next >

< Back

Essential Question

How can you use the Pythagorean Theorem to solve problems?

Standard

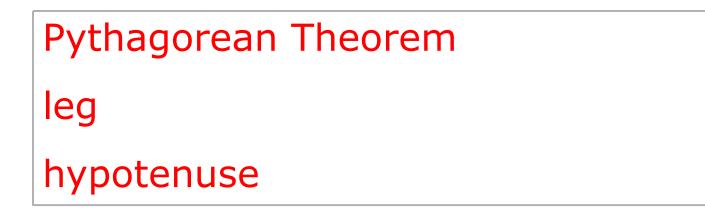
MCC8.G.7: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

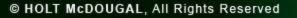
Next >

Back

Lesson 💼

Main n


Vocabulary


Lesson 💼

Main n

Next >

< Back

Pythagoras was born on the Aegean island of Samos. He is best known for the *Pythagorean Theorem*, which relates the side lengths of a right triangle.

Lesson 💼

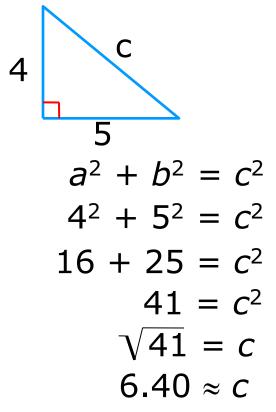
Main n

Back

Next >

Words	Numbers	Algebra	
In any right triangle, the sum of the squares of the lengths of the two <mark>legs</mark> is equal to the square of the length of the <mark>hypotenuse</mark> .	$8 \frac{10}{6}$ $\frac{6^2}{6} + 8^2 = 10^2$ $36 + 64 = 100$	Hypotenuse a b Legs $a^2 + b^2 = c^2$	

Lesson 🔒


(Main 🕇)

Next >

< Back

Additional Example 1A: Finding the Length of a Hypotenuse

Find the length of the hypotenuse to the nearest hundredth.

Pythagorean Theorem Substitute for a and b. Simplify powers.

Solve for c; $c = \sqrt{c^2}$.

Back

Next >

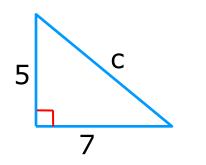
Lesson 💼

Main 🖬

Helpful Hint

When using the Pythagorean Theorem to find length, use only the principal square root.

Lesson 💼


Main n

Back

Next >

Check It Out: Example 1A

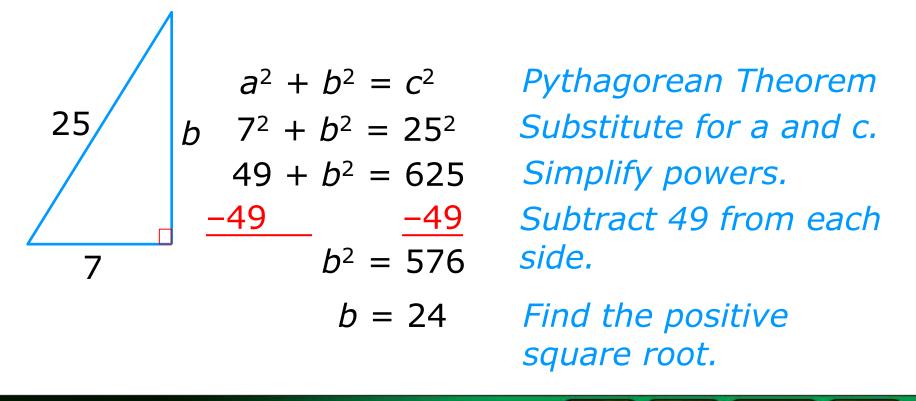
Find the length of the hypotenuse to the nearest hundredth.

$$a^{2} + b^{2} = c^{2}$$

 $5^{2} + 7^{2} = c^{2}$
 $25 + 49 = c^{2}$
 $\sqrt{74} = c$
8.60 ≈ c

Pythagorean Theorem Substitute for a and b. Simplify powers. Solve for c; $c = \sqrt{c^2}$.

Back


Next >

Lesson 💼

Main n

Additional Example 2: Finding the Length of a Leg in a Right Triangle

Solve for the unknown side in the right triangle to the nearest tenth.

Next >

Back

Lesson 💼

Main n

Additional Example 3: Using the Pythagorean Theorem for Measurement

Two airplanes leave the same airport at the same time. The first plane flies to a landing strip 350 miles south, while the other plane flies to an airport 725 miles west. How far apart are the two planes after they land?

 $a^{2} + b^{2} = c^{2}$ Pythagorean Theorem $350^{2} + 725^{2} = c^{2}$ Substitute for a and b. $122,500 + 525,625 = c^{2}$ Simplify powers. $648,125 = c^{2}$ Add. $805 \approx c$ Find the positive square root.

Next >) (Lesson ft)

Back

Main 🕇

The two planes are approximately 805 miles apart.

Check It Out: Example 1B

Find the length of the hypotenuse to the nearest hundredth.

triangle with coordinates (-2, -2), (-2, 4), and (3, -2)

The points form a right triangle.

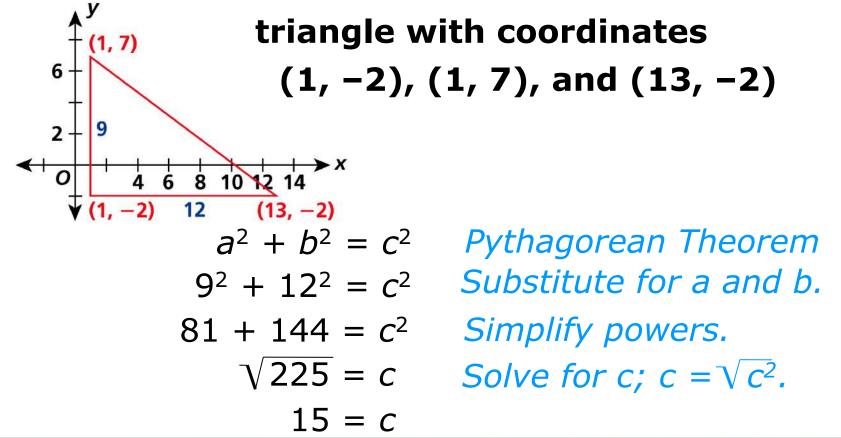
x a² + b² = c² Pythagorean Theorem6² + 5² = c² Substitute for a and b.36 + 25 = c² Simplify powers.√ 61 = c Solve for c; c = √c².7.81 ≈ c

Back

Next >

Lesson 💼

Main n

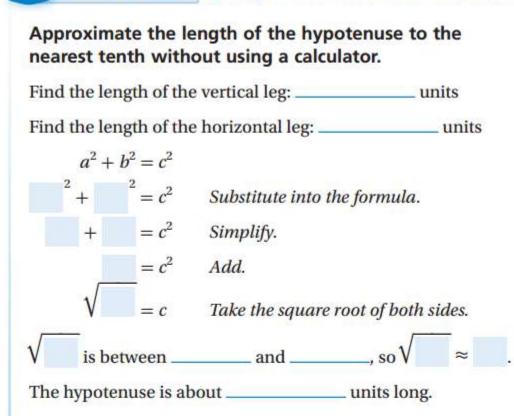

·2)

(3, -2)

(-2,

Additional Example 1B: Finding the Length of a Hypotenuse

Find the length of the hypotenuse to the nearest hundredth.

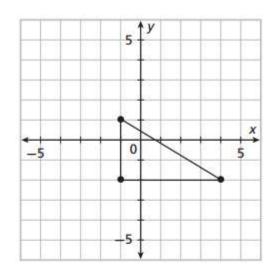

Next >

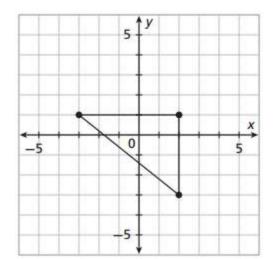
Back

Lesson 💼

Main 💼

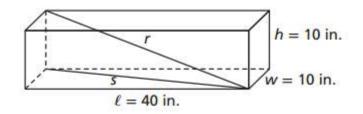
EXAMPLE Pythagorean Theorem in the Coordinate Plane

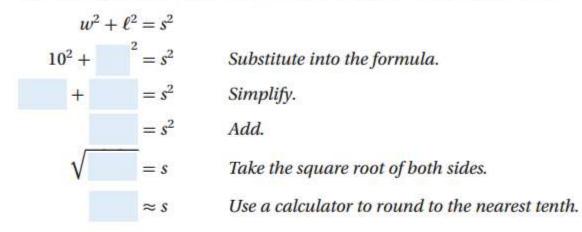



TRY THIS!

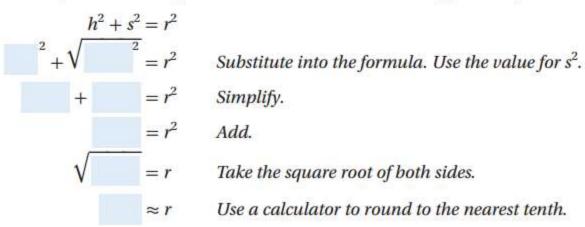
MCC8.G.8

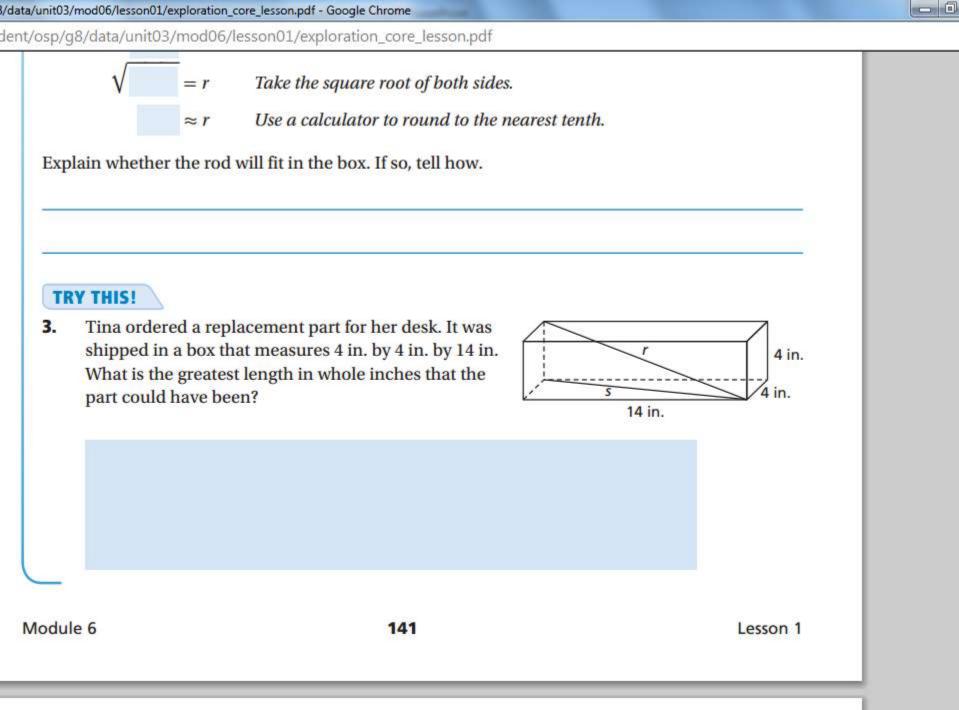
2


 Approximate the length of the hypotenuse to the nearest tenth without using a calculator.


3 E X A M P L E **Pythagorean Theorem in Three Dimensions**

Mr. Woo wants to ship a fishing rod that is 42 inches long to his son. He has a box that measures 10 inches by 10 inches by 40 inches. Will the fishing rod fit in the box?




Will the rod fit in the bottom of the box?

Let s represent the length of the diagonal across the bottom of the box.

Will the rod fit diagonally from one bottom corner to the opposite top corner? Let *r* represent the length from a bottom corner to the opposite top corner.

Workbook Pg. 142

Scan for answers

Back

Next >

Lesson 💼

Main 💼

Review Video

Day 2

Review

- Find the height h of the triangle.
 8 m
- **2.** Find the length of side *c* to the nearest meter.

12 m

Lesson 💼

Main n

Next >

Back

Essential Question

How can you use the Pythagorean Theorem to solve problems?

Standard

MCC8.G.7: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

Next >

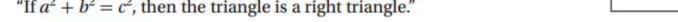
Back

Lesson 💼

Main n

6-2 Applying the Pythagorean Theorem and Its Converse

1. Video


Lesson 💼

Main n

Back

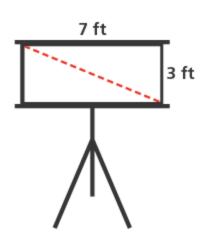
Next >

© HOLT McDOUGAL, All Rights Reserved

Decide whether the converse of the Pythagorean Theorem is true.

A Verify that the following sets of lengths make the equation $a^2 + b^2 = c^2$ true. Record your results in the table.

а	b	c	$ls a^2 + b^2 = c^2 true?$	Makes a right triangle?
3	4	5		
5	12	13		
7	24	25		
8	15	17		
20	21	29		


- **B** For each set of lengths in the table, cut strips of grid paper with a width of one square and lengths that correspond to the values of *a*, *b*, and *c*.
- For each set of lengths, use the strips of grid paper to try to form a right triangle. An example using the first set of lengths is shown here.
 Record your findings in the table.

b

REFLECT

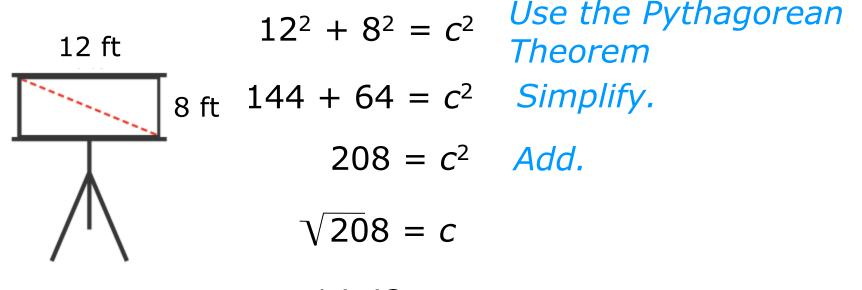
2. Based on your observations, explain whether you think the converse of the Pythagorean Theorem is true.

Additional Example 1: Marketing Application What is the diagonal length of the projector screen?

- $7^{2} + 3^{2} = c^{2}$ $49 + 9 = c^{2}$ $58 = c^{2}$ $\sqrt{58} = c$ Use the Pythagorean Theorem Theorem Simplify.
 - 7.615 ≈ *c*

The diagonal length should be given as about 7.62 feet.

Back


Lesson 💼

Main n

Next >

Check It Out: Example 1

What is the diagonal length of the projector screen?

14.42 ≈ *c*

The diagonal length should be given as about 14.4 feet.

Back

Lesson 💼

Main n

Next >

- do you prefer? Why?
- Step 5: Find a rectangular box in your classroom. Measure and record the length, width and height of the box to the nearest tenth of a centimeter.
- Step 6: Find the length of the longest stick that can fit in the box using either method in this Explore!

THE PYTHAGOREAN THEOREM IN THREE DIMENSIONS

In a rectangular prism, the length of the longest diagonal *d* squared is equal to the sum of the squares of the length *a*, width *b* and height *c* of the prism.

$$a^2 + b^2 + c^2 = d^2$$

EXAMPLE 3 What is

What is the longest object that Simone can put in a rectangular box that is 10 inches wide, 12 inches long and 20 inches tall? Round to the nearest tenth of an inch.

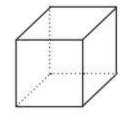
SOLUTION

Write the three-dimensional formula. Substitute the values of the length, width and height. Simplify by squaring. Add. Square root both sides of the equation. Round to the nearest tenth. $a^{2} + b^{2} + c^{2} = d^{2}$ $10^{2} + 12^{2} + 20^{2} = d^{2}$ $100 + 144 + 400 = d^{2}$ $\frac{644}{\sqrt{644}} = d^{2}$ $\sqrt{644} = \sqrt{d^{2}}$ $25.4 \approx d$

The longest object that can fit in the box is about 25.4 inches.

EXERCISES

Draw a diagram and solve for the missing measure. When necessary, round to the nearest tenth.


1 Laffingt hought a house on a triangular lat. The sides measure 95 feet 122 feet and 157 feet

- is one include the normal and and the nump can reach a
- 11. A rectangular prism is 3 feet long, 4 feet wide and 2 feet tall. What is the length of its longest diagonal?
- **12.** Petra is sending her brother a giant candy cane stick for a gift. She will use a box that measures 10 inches by 6 inches by 2 inches. What is the maximum length the candy cane stick can be to fit in the box?
- 13. Elena needs to ship a 61 cm concert flute to a customer. She has two rectangular boxes. One is 25 cm by 25 cm by 50 cm. The other box is 10 cm by 12 cm by 58 cm.
 - a. What is the longest object that will fit in the 25 cm × 25 cm × 50 cm rectangular box?
 - b. What is the longest object that will fit in the 10 cm × 12 cm × 58 cm rectangular box?
 - c. In which box will the flute best fit?

Lesson 18 ~ Applying The Pythagorean Theorem 107

- 14. A steel box measures 9 inches by 6 inches by 6 inches. What is the measure of the longest diagonal in the box?
- 15. A cube has a surface area of 600 square meters.
 - a. How many faces does a cube have?
 - b. What is the area of one face of the cube?
 - c. Find the length of one side of the cube.
 - d. What is the length of the cube's longest diagonal?

REVIEW

Find the value of x in each diagram. If necessary, round to the nearest tenth.

16.

17.

18.

100

Workbook Practice Pg. 147

Scan to get answers Skip #9 for now

Next >

Back

Lesson 💼

Main n

Lesson 👔

(Main 🏦)

Next >

< Back

© HOLT McDOUGAL, All Rights Reserved

is 48 inches wide and 20 inches high. What diagonal length should she use in the brochure?

Find the length of the diagonal of the TV screen.

 $20^{2} + 48^{2} = c^{2}$ $400 + 2304 = c^{2}$ $2704 = c^{2}$ $\sqrt{2704} = c$ 52 = c 52 = cFind the square root.
The diagonal length should be given as 52 inches.

You can use the Pythagorean Theorem to find distance on the coordinate plane. Diagonal distance can be thought of as the hypotenuse of a right triangle. By substituting into the Pythagorean Theorem, you can develop a formula for distance.

$$c^2 = a^2 + b^2$$

distance² =
$$|x_2 - x_1|^2 + |y_2 - y_1|$$

grcode.25321553.png

$$d = \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

Because the square of the absolute value is always nonnegative, the absolute value symbols are not needed.

THE DISTANCE FORMULA

The distance between two points (x_1, y_1) and (x_2, y_2) on the coordinate plane is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

148 Module 6 Geometric Applications of Exponents

Accomodationsxlsx

New Bloom in agree/Marry, DV Allo Foto Agence

SolvingTwoStepEqu....pdf

HC Turkey Trot Regi....pdf

 (x_1, y_1)

5

vertical change

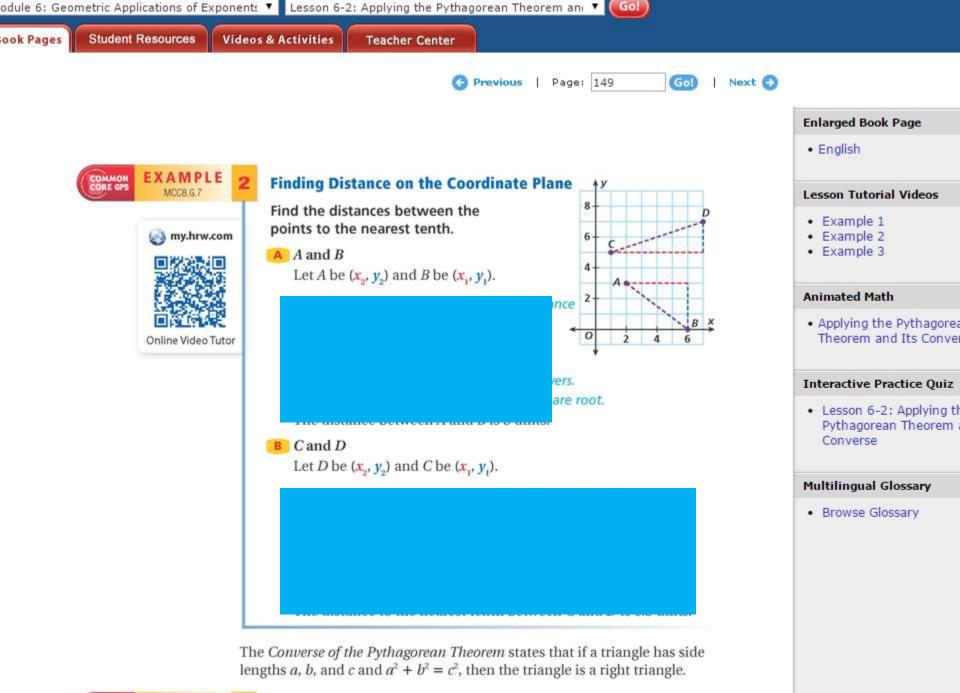
 $|y_2 - y_1|$

2

0

distance

(x2, y2)


horizontal change $|x_2 - x_1|$

Multilingual Glossary

Twostepequationgr....docx

œ۳

Browse Glossary

COMMON EXAMPLE 3

Identifying a Right Triangle