
Name:

- 1. Consider the expression  $3n^2 + n + 2$ .
  - a. What is the coefficient of *n*?
  - b. What terms are being added in the expression?
- 2. Factor the expression  $16a^2 81$ .
- 3. Factor the expression  $12x^2 + 14x 6$ .
- 4. Write  $f(x) = 2x^2 + 12x + 1$  in vertex form.
- 5. The function  $h(t) = -t^2 + 8t + 2$  represents the height, in feet, of a stream of water being squirted out of a fountain after t seconds. What is the maximum height of the water?
- 6. What are the zeros of the function represented by the quadratic expression  $x^2 + 6x 27$ ?
- 7. What are the zeros of the function represented by the quadratic expression  $2x^2 5x 3$ ?
- 8. The product of two consecutive positive integers is 132.
  - a. Write an equation to model the situation.
  - b. What are the two consecutive integers?
- 9. The formula for the volume of a cylinder is  $V = \pi r^2 h$ .
  - a. Solve the formula for *r*.
  - b. If the volume of a cylinder is  $200\pi$  cubic inches and the height of the cylinder is 8 inches, what is the radius of the cylinder?
- 10. Graph the function represented by the equation  $y = 3x^2 6x 9$ .

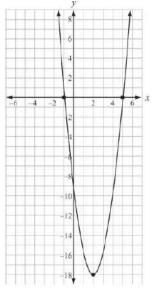


Name:

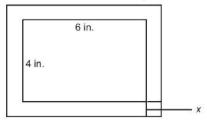
11. Solve the equation  $x^2 - 10x + 25 = 0$  by factoring.

- 12. Solve the equation  $x^2 100 = 0$  by using square roots.
- 13. A ball is thrown into the air from a height of 4 feet at time t = 0. The function that models this situation is h(t) = -16t<sup>2</sup> + 63t + 4, where t is measured in seconds and h is the height in feet.
  a. What is the height of the ball after 2 seconds?
  - b. When will the ball reach a height of 50 feet?
  - c. What is the maximum height of the ball?
  - d. When will the ball hit the ground?
  - e. What domain makes sense for the function?
- 14. This table shows a company's profit, p, in thousands of dollars over time, t, in months.

| Profit, <i>p</i><br>(thousands of dollars) |
|--------------------------------------------|
| 18                                         |
| 66                                         |
| 123                                        |
| 258                                        |
| 627                                        |
|                                            |


- a. Describe the average rate of change in terms of the given context.
- b. What is the average rate of change of the profit between 3 and 7 months?
- c. What is the average rate of change of the profit between 3 and 24 months?

#### 15. Graph the function $f(x) = x^2 - 5x - 24$ .


|   |   |    |   |    |   |   |   | 2.5 |   |   | 2. |   |   |   |
|---|---|----|---|----|---|---|---|-----|---|---|----|---|---|---|
|   |   |    |   |    |   |   |   |     |   |   |    |   |   |   |
|   |   |    |   |    |   | 1 |   |     |   |   |    |   |   |   |
|   |   |    |   |    |   |   |   |     |   |   |    |   |   |   |
|   |   |    |   |    |   |   |   |     |   |   | 2  |   |   |   |
|   |   |    |   |    |   |   |   |     |   |   |    |   |   |   |
|   |   | 10 |   |    |   |   |   | 1   | 1 |   | 1  |   |   | - |
|   |   |    |   |    |   |   |   |     |   |   |    |   |   |   |
|   |   |    |   |    |   |   |   | 1   |   |   |    |   |   | _ |
|   |   |    |   |    |   |   |   |     |   |   |    |   | _ |   |
|   |   |    |   |    |   | 1 |   | 1   | 1 |   |    |   |   | _ |
|   |   |    | - |    |   |   |   |     |   |   |    |   | _ | _ |
| 1 |   |    |   |    |   |   |   |     |   | _ |    |   | _ | _ |
|   |   |    |   |    | 1 |   | - | 154 | - |   |    |   |   | _ |
|   |   | _  |   | 1. | _ |   |   | _   |   |   |    |   | - | _ |
|   |   |    | - |    |   |   |   | -   |   |   |    |   |   | _ |
|   | _ |    | _ |    | - | _ |   | -   | - | - | -  | - | - | _ |
|   |   |    |   | 1  |   | 5 |   | 1   |   |   |    |   | 1 |   |

Name:

16. This graph shows a function f(x). Compare the graph of f(x) to the graph of the function given by the equation  $g(x) = 4x^2 + 6x - 18$ . Which function has the lesser minimum value? How do you know?



17. Annie is framing a photo with a length of 6 inches and a width of 4 inches. The distance from the edge of the photo to the edge of the frame is *x* inches. The combined area of the photo and frame is 63 square inches.





- a. Write a quadratic function to find the distance from the edge of the photo to the edge of the frame.
- b. How wide are the photo and frame together?
- 18. A scuba diving company currently charges \$100 per dive. On average, there are 30 customers per day. The company performed a study and learned that for every \$20 price increase, the average number of customers per day would be reduced by 2.
  - a. The total revenue from the dives is the price per dive multiplied by the number of customers. What is the revenue after 4 price increases?
  - b. Write a quadratic equation to represent x price increases.
  - c. What price would give the greatest revenue?
- 19. Consider the sequence 2, 6, 12, 20, 30, ...
  - a. What explicit expression can be used to find the next term in the sequence?
  - b. What is the tenth term of the sequence?

Name:

- 20. Compare the graphs of the following functions to f(x).
  - a.  $\frac{1}{2}f(x)$
  - b. *f*(*x*) − 5
  - c. f(x-2) + 1
- 21. Is  $f(x) = 2x^3 + 6x$  even, odd, or neither? Explain how you know.
- 22. How does the graph of f(x) compare to the graph of  $f(\frac{1}{2}x)$ ?
- 23. This table shows that the value of  $f(x) = 5x^2 + 4$  is greater than the value of  $g(x) = 2^x$  over the interval [0, 8]. As x increases, will the value of f(x) always be greater than the value of g(x)? Explain how you know.

| x | <i>f</i> ( <i>x</i> ) | <i>g</i> ( <i>x</i> ) |
|---|-----------------------|-----------------------|
| 0 | $5(0)^2 + 4 = 4$      | $2^0 = 1$             |
| 2 | $5(2)^2 + 4 = 24$     | $2^2 = 4$             |
| 4 | $5(4)^2 + 4 = 84$     | $2^4 = 16$            |
| 6 | $5(6)^2 + 4 = 184$    | $2^6 = 64$            |
| 8 | $5(8)^2 + 4 = 324$    | $2^8 = 256$           |

- 24. How does the growth rate of the function f(x) = 2x + 3 compare with  $g(x) = 0.5x^2 3$ ? Use a graph to explain your answer.
- 25. Amery recorded the distance and height of a basketball when shooting a free throw. The height of the basketball after x seconds can be approximated by the quadratic function  $f(x) = -0.118x^2 + 2.112x + 4.215$ . Using this function, what is the approximate maximum height of the basketball?

| Distance (feet), x | Height (feet), f(x) |
|--------------------|---------------------|
| 0                  | 4                   |
| 2                  | 8.4                 |
| 6                  | 12.1                |
| 9                  | 14.2                |
| 12                 | 13.2                |
| 13                 | 10.5                |
| 15                 | 9.8                 |

26. This table shows the population of a city every 10 years since 1970

| Years Since 1970, x | Population (thousands), y |
|---------------------|---------------------------|
| 0                   | 489                       |
| 10                  | 801                       |
| 20                  | 1,202                     |
| 30                  | 1,998                     |
| 40                  | 2,959                     |

- a. Make a scatter plot showing the data.
- b. Which type of function better models the relationship between 1970 and 2010, quadratic or linear?