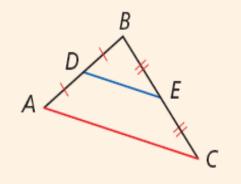

Midsegments of Triangles

A <u>midsegment of a triangle</u> is a segment that joins the midpoints of two sides of the triangle. Every triangle has three midsegments, which form the *midsegment triangle*.

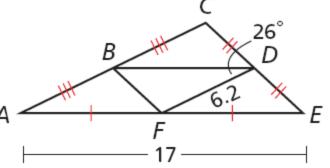

Midsegments: XY, YZ, ZX

Midsegment triangle: $\triangle XYZ$

Theorem 5-4-1 Triangle Midsegment Theorem

A midsegment of a triangle is parallel to a side of the triangle, and its length is half the length of that side.

$$\overline{DE} \parallel \overline{AC}, DE = \frac{1}{2}AC$$

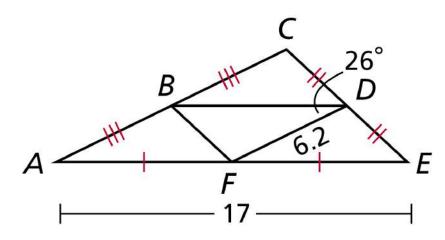


Example 2A: Using the Triangle Midsegment Theorem

Find each measure.

BD

$$BD = \frac{1}{2}AE$$
 \triangle Midsegment Thm. A


$$BD = \frac{1}{2}(17)$$
 Substitute 17 for AE.

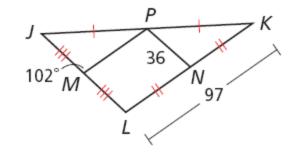
$$BD = 8.5$$
 Simplify.

Example 2B: Using the Triangle Midsegment Theorem

Find each measure.

m/CBD

$$m\angle CBD = m\angle BDF Alt. Int. \angle s Thm.$$


$$m\angle CBD = 26^{\circ}$$

 $m\angle CBD = 26^{\circ}$ Substitute 26° for $m\angle BDF$.

Check It Out! Example 2a

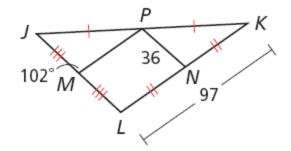
Find each measure.

JL

$$PN = \frac{1}{2}JL \Delta Midsegment Thm.$$

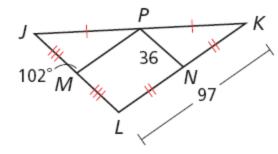
$$72 = JL$$
 Simplify.

Check It Out! Example 2b


Find each measure.

PM

$$PM = \frac{1}{2}LK \Delta Midsegment Thm.$$


$$PM = \frac{1}{2}(97)$$
 Substitute 97 for LK.

$$PM = 48.5$$
 Simplify.

Check It Out! Example 2c

Find each measure.

$$\overline{MP} \parallel \overline{LK}$$

△ Midsegment Thm.

$$m\angle MLK = m\angle JMP$$

Similar triangles

$$m\angle MLK = 102^{\circ}$$

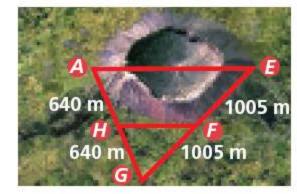
Substitute.

Example 3: Indirect Measurement Application

In an A-frame support, the distance PQ is 46 inches. What is the length of the support \overline{ST} if S and T are at the midpoints of the sides?

$$ST = \frac{1}{2}PQ$$
 \triangle Midsegment Thm.
 $ST = \frac{1}{2}(46)$ Substitute 46 for PQ.
 $ST = 23$ Simplify.

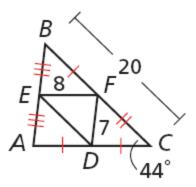
The length of the support *ST* is 23 inches.


Check It Out! Example 3

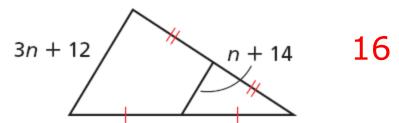
What if...? Suppose Anna's result in Example 3 (p. 323) is correct. To check it, she measures a second triangle. How many meters will she measure between *H* and *F*?

$$HF = \frac{1}{2}AE$$
 \(\Delta \text{ Midsegment Thm.} \)

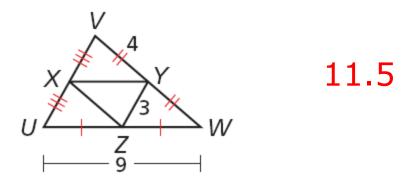
$$HF = \frac{1}{2}(1550)$$
 Substitute 1550 for AE.


$$HF = 775 \text{ m}$$
 Simplify.

Lesson Quiz: Part I

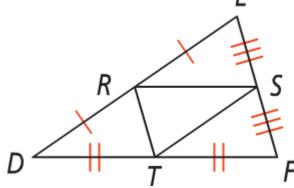

Use the diagram for Items 1-3. Find each measure.

3. m∠*BFE* 44°



Lesson Quiz: Part II

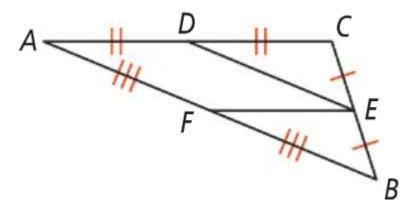
4. Find the value of *n*.



5. $\triangle XYZ$ is the midsegment triangle of $\triangle WUV$. What is the perimeter of $\triangle XYZ$?

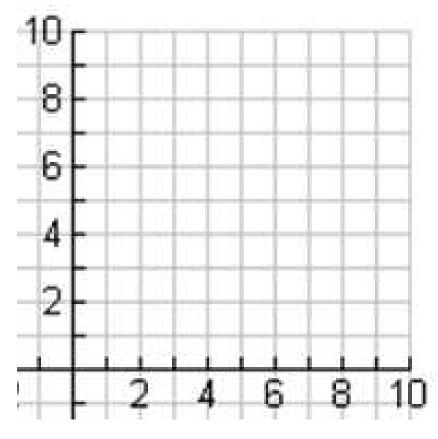
Identifying Parallel Segments

What are the three pairs of parallel segments in $\triangle DEF$?



Finding Lengths

• In $\triangle QRS$, T, U, and B are midpoints. What are the lengths of \overline{TU} , \overline{UB} , and \overline{QR} ?


In the figure below, AD = 6 and DE = 7.5. What are the lengths of \overline{DC} , \overline{AC} , \overline{EF} , and \overline{AB} ?

Using Midpoints to Draw a Triangle

he midpoints of the sides of a triangle are L(4, 2), M(2, 3), and N(5, 4). What are the coordinates of the vertices of the

triangle?

