
Mathematical Calculations in Java

Mrs. G. Chapman

Review of Declaring Variables

int sum;
 typeidentifier

This statement declares sum.

It reserves a space in memory large enough to store an int.

Assignments Statements

We are initializing sum to 120.

We use the assignment operator (=) to give a
value to a variable. This is not used for
comparison. (Does sum equal 120?)

sum = 120;
 identifer assignment value

 operator

Variables- The value of a variable can be changed.

public class Geometry
{
public static void main (String [] args)
{
int sides = 7;
System.out.println (“A heptagon has “ + sides + “ sides.”);

sides = 10;
System.out.println (“A decagon has “ + sides + “ sides.”);

sides = 12;
System.out.println (“A dodecagon has “ + sides + “ sides.”);
}
}

In Memory:
sides

7
10
12

Output of previous code

Output:
A heptagon has 7 sides.
A decagon has 10 sides.

A dodecagon has 12 sides.

What is happening in memory?

When ever sides is assigned a
new value, it writes over the
previous value. So, when sides is
assigned 10, it “forgets” the 7, and
now holds the 10. This happens
again when it is assigned 12… it
“forgets” the 10 and now holds 12.
Once it is assigned a new value,
the old one is lost forever.

Assignment Statements

sides = 10;

The value on the right is given to the variable
on the left.

This does not mean “equals” for comparison!!
The value that is assigned must be of the same

type. sides = 5.5; This will generate an type
mismatch error.

Arithmetic Expressions

Expressions: combinations of operators and
operands to perform calculations.

The value calculated does not have to be a
number, but often is.

Arithmetic Operators

int and double operators:
+ addition
-subtraction
* multiplication
/division
% modulus or remainder

Modulus Operator %

% (mod) remainder operator – returns the
remainder when you divide 2 integers or
doubles.

Example: int result = 7 % 3;
2
 3 7
6
1 Remainder

result
1

2 Types of Division

1. integer division – when both operands are of
type integer, we truncate the fractional part.

result = 7 / 3;

2. floating point division – if one or both
operands are floating point numbers, then
the fractional part is kept.

double dresult = 7.0 / 3.0;

result
2

dresult
2.333333333…

Order of Operations

Java has to follow the order of operations when
computing an expression

As a reminder if operators are on the same
level, we work left to right.

Assignments work right to left.

Parenthesis
Multiplication, Division, Modulus

Addition, Subtraction, String Concatenation
Assignment

+ with Strings

+ is the concatenation operator with Strings.

It is used to “add” Strings together. I put “add”
in double quotes, because Strings are called
immutable… meaning their value can never
change. (Read next slide)

Strings are immutable

This means that Strings can never change.
When using methods or operators on Strings,
we aren’t changing Strings rather creating
new String.

Recall: String class is very special. It is the
only class that we can create objects without
using the keyword “new”. When ever there is
a String literal, or addition of Strings, etc.
Strings are automatically created.

String addition

System.out.println (“A dodecagon has “ + sides + “
sides.”);

Working left to right… the String “A dodecagon has “ is
being added with an int.

The integer is “promoted” to a String… a new String is
created: “12” The 2 Strings are added together: “A
dodecagon has 12”

Now we add this String with the String “ sides.”
“A dodecagon has 12 sides.”

This is a brand new String that is output to the user.

The Problem with Concatenation

System.out.println (“The value is “ + 24 + 25);

Every time Java sees a String it promotes what is being
added to also be a String… so…

When the first to pieces are added our result is a
String: “The value is 24” 24 is no longer and int!!

When this is concatenated with 25, we get our output
above.

Output:
The value is 2425

Fixing the Problem

We need to use parenthesis:

System.out.println (“The value is “ + (24 + 25));

By using parenthesis, we force Java to add 24
and 25 first, resulting in 49.

Then we do our String addition… 49 is
promoted to a String, and our result is….

The value is 49

Type Conversions

Sometimes we will need to change the type of a
variable in order to use it with another variable or
value.

Values can be widened or narrowed.
Widening: If you are going from a type that has a

smaller memory storage to one with a larger memory
storage, you are widening. int to double

Narrowing: If you are going from a type with a larger
memory storage to a smaller memory storage, you
are narrowing. double to int

*** When doing a Narrowing conversion, we run the risk
of losing data.

Types of Conversions

There are 3 types of conversions:
1. Arithmetic Promotion
2. Assignment Conversion
3. Type Casting

Arithmetic Promotion

This is a widening conversion that will change the
type so that arithmetic operations can be
performed.

A perfect example is concatenating a String with an
int.

Another example:
double dresult = 7.0 / 2;
2 gets promoted to a double for floating point

division.
This type of conversion is done automatically, and does not require any

intervention on the part of the programmer.

Assignment Conversion

If we assign an int to a double, we are converting it to a
double.

int startingValue = 3;
double targetValue = startingValue;

The 3 stored in startingValue is changed to a double,
and then assigned.

We can not go the other way around: startingValue = targetValue;
This will generate a type mismatch error.

Type Casting

We can force a variable to change type by
using typecasting. In front of the variable you
wish to change, put the new type in
parenthesis.

Example: double ans = (double)7 / 3;
This will change 7 into a double so that we are

doing floating point division rather than
integer division. ans = 2.33333333, rather
than 2.0.

Typecasting a double an int

public class Money
{
private double amount;
public Money (double initialAmt)
{
amount = initialAmt;
}

public int dollarAmount()
{
return (int)amount;
}
}

By typecasting amount
an int, we truncate
(remove) the decimal
portion of the number. It
is NOT rounded.

Ex. if amount = 5.50;
the value being returned
by return (int)amount; is
5.

