Math IV – Second Semester Final Exam REVIEW

Name:

Period:

All work should be clearly organized and labeled on a SEPARATE SHEET for credit.

UNIT 5

- 1.) Find the exact values of the following without a calculator:
 - a. sin 0°
 - b. sin 1485 °
 - c. sec 1860°
 - d. $\cos(-\frac{\pi}{4})$
 - e. $\tan \frac{11\pi}{6}$
 - f. $\cot \frac{-5\pi}{2}$
- 2.) $y = \frac{1}{11}\sin\theta$.
 - a. Find the amplitude.
 - b. Graph the function.
- 3.) Write an equation of the cosine function with amplitude 3 and period 6π .
- 4.) Write an equation of the cosine function with the given amplitude, period, phase shift, and vertical shift. amplitude = 3; period = π ; phase shift = $\frac{3}{8}\pi$; vertical shift = -3
- 5.) The normal monthly temperatures (°F) for Omaha, Nebraska, are recorded below.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
t	1	2	3	4	5	6	7	8	9	10	11	12
Temp.	21°	27°	39°	52°	62°	72°	77°	74°	65°	53°	39°	25°

- a. Write a sinusoidal function that models Omaha's monthly temperature variation.
- b. Use the model to estimate the normal temperature during the month of June.
- 6.) Write an equation, g(t), which transforms $f(t) = \csc t$ compressed vertically by a factor of $\frac{1}{2}$ and shifted 8 units to the left and down 6 units.

UNIT 6

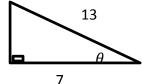
7.) Simplify $\csc x - \tan x \cos x$

- 8.) $\cot x \sin x = \cos x$
 - a. What basic trigonometric identity would you use to verify the above statement?
 - b. Verify the above.
- 9.) $\csc\left(\frac{\pi}{2} \theta\right) = \sec\theta$
 - a. Which sum or difference identity can be used to verify the above identity?
 - b. Verify the identity.

```
10.) Verify:
```

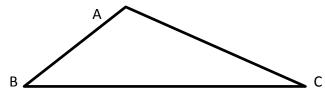
a. $\cot x - \csc x = \frac{\cos x - 1}{\sin x}$

b.
$$\sin(\pi + x) = -\sin x$$

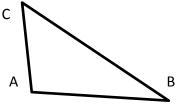

11.) Solve:

- a. $4 6\sin x = 4 \sin x$ for $0^{\circ} \le x \le 180^{\circ}$
- b. $\tan x + 1 = \sec x$ for [0, 360)
- c. $tan^2x + 5 = 4 \sec x$ on the interval $[0, 2\pi)$
- d. $2 \cos x \sin x \cos x = 0$ for $0 \le x \le 2\pi$
- 12.) Use a calculator to solve the following on the interval [0,360°]. Keep two decimals.

 $16 - 16\cos^2 x = 1$


UNIT 7

- 13.) At a certain time of day, the Washington Monument casts a shadow 790 feet long. From the tip of the shadow, the angle from the horizontal to the top of the monument is 35°. Use this information to find the height of the monument to the nearest foot.
- 14.) Find the exact values of the six trigonometric functions of θ for the right triangle shown below:


15.) In what quadrant does the terminal side of θ lie if $\tan \theta < 0$ and $\cos \theta > 0$?

- 16.) Given a triangle with a = 14, $A = 41^{\circ}$, and $B = 34^{\circ}$, what is the length of c? Round to the nearest tenth.
- 17.) $\triangle ABC$ below has c = 7, B = 45°, and C = 55°
 - a. Solve for all missing angle measures and side lengths.
 - b. Find the Area of $\triangle ABC$

18.) $\triangle ABC$ below has a = 11, b = 5, and C = 20°

- a. Solve for all missing angle measures and side lengths.
- b. Find the Area of ΔABC

19.) A painter needs to cover a triangular region 60 meters by 69 meters by 71 meters. A can of paint covers 70 square meters. How many cans will be needed?