

GRADE 10: CCGPS Math II/ Analytic Geometry MATHEMATICS - Curriculum Map

(adapted from Georgia Department of Education) UPDATED JULY 2013

7/31/2013

	Common Core Georgia Performance Standards						
SEMESTER 1			SI	EMESTER 2			
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	
7 weeks	2 weeks	5 weeks	4 weeks	8 weeks	4 weeks	3 weeks	
Similarity, Congruence and Proofs	Right Triangle Trigonometry	Circles and Volume	Extending the Number System	Quadratic Functions	Modeling Geometry	Applications of Probability	
MCC9-12.G.SRT.1 MCC9-12.G.SRT.2 MCC9-12.G.SRT.3 MCC9-12.G.SRT.3 MCC9-12.G.SRT.5 MCC9-12.G.SRT.5 MCC9-12.G.CO.6 MCC9-12.G.CO.7 MCC9-12.G.CO.7 MCC9-12.G.CO.10 MCC9-12.G.CO.11 MCC9-12.G.CO.12 MCC9-12.G.CO.13	MCC9-12.G.SRT.6 MCC9-12.G.SRT.7 MCC9-12.G.SRT.8	MCC9-12.G.C.1 MCC9-12.G.C.2 MCC9-12.G.C.3 MCC9-12.G.C.4(+) MCC9-12.G.C.5 MCC9-12.G.GMD.1 MCC9-12.G.GMD.2(+) MCC9-12.G.GMD.3	MCC9-12.N.RN.1 MCC9-12.N.RN.2 MCC9-12.N.RN.3 MCC9-12.N.CN.1 MCC9-12.N.CN.2 MCC9-12.N.CN.3(+) MCC9-12.A.APR.1	MCC9-12.N.CN.7 MCC9-12.A.SSE.1a,b MCC9-12.A.SSE.2 MCC9-12.A.SSE.3a,b MCC9-12.A.CED.1, 2, 4 MCC9-12.A.REI.4a,b MCC9-12.A.REI.7 MCC9-12.F.IF.4 - 6 MCC9-12.F.IF.7a, 8a MCC9-12.F.IF.9 MCC9-12.F.IF.9 MCC9-12.F.BF.1a,b MCC9-12.F.BF.3 MCC9-12.F.LE.3 MCC9-12.S.ID.6a	MCC9-12.A.REI.7 MCC9-12.G.GPE.1 MCC9-12.G.GPE.2 MCC9-12.G.GPE.4	MCC9-12.S.CP.1 MCC9-12.S.CP.2 MCC9-12.S.CP.3 MCC9-12.S.CP.4 MCC9-12.S.CP.5 MCC9-12.S.CP.6 MCC9-12.S.CP.7	
	Overarching Essential Questions						
"How can I use what I know to prove similarity and congruence using triangles?"	"How do I use similarity to derive right triangle trigonometry that model real world situations?	"How do I define, evaluate, and compare characteristics of circles using tangent lines, secant lines, angles and line segments?"	"How do I summarize, represent, interpret, and extend the number system beyond real numbers?"	"How do I analyze, explain, and verify processes of solving, graphing, and comparing quadratic functions, and systems that model real life situations?	"How can I use the coordinate plane and algebraic methods to solve systems that model real life phenomena?"	"How can I make predictions using theoretical probabilities of compound events?	

Grade 9-12 Key:

Number and Quantity Strand: RN = The Real Number System, Q = Quantities, CN = Complex Number System, VM = Vector and Matrix Quantities Algebra Strand: SSE = Seeing Structure in Expressions, APR = Arithmetic with Polynomial and Rational Expressions, CED = Creating Equations, REI = Reasoning with Equations and Inequalities Functions Strand: IF = Interpreting Functions, LE = Linear and Exponential Models, BF = Building Functions, TF = Trigonometric Functions Geometry Strand: CO = Congruence, SRT = Similarity, Right Triangles, and Trigonometry, C = Circles, GPE = Expressing Geometric Properties with Equations, GMD = Geometric Measurement and

Dimension, MG = Modeling with Geometry Statistics and Probability Strand: ID = Interpreting Categorical and Quantitative Data, IC = Making Inferences and Justifying Conclusions, CP = Conditional Probability and the Rules of Probability, MD = Using Probability to Make Decisions

Specific modeling standards appear throughout the high school standards indicated by a star symbol (\star) .

Standards for Mathematical Practice are addressed through the learning tasks throughout the year!

First Semester

	1 4 6 7 6 6		
Unit 1	Unit 2	Unit 3	Unit 4
Similarity, Congruence and Proofs	Right Triangle Trigonometry	Circles and Volume	Extending the Number
			System
August 5 - September 20	<u>September 23 - October 4</u>	<u>October 14 - November 15</u>	November 18 - December 20
			(Semester Review & Exam:
			December 16-20)
	Common Core Georgia Perfo	ormance Standards	·
Understand similarity in terms of similarity	Define trigonometric ratios and solve	Understand and apply theorems about	Extend the properties of exponents to
transformations MCC9-12.G.SRT.1 Verify experimentally the properties of dilations given by a center and a scale	problems involving right triangles MCC9-12.G.SRT.6 Understand that by similarity side ratios in right triangles are	circles MCC9-12.G.C.1 Prove that all circles are similar. MCC9 12 C C 2 Identify and describe	rational exponents MCC9-12.N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the
 a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a 	properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute	relationships among inscribed angles, radii, and chords. Include the relationship between	properties of integer exponents to those values, allowing for a notation for radicals
b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.	angles. MCC9-12.G.SRT.7 Explain and use the relationship between the sine and cosine of	central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular	in terms of rational exponents. MCC9-12.N.RN.2 Rewrite expressions involving radicals and rational exponents
MCC9-12.G.SRT.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar: explain	complementary angles. MCC9-12.G.SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right	to the tangent where the radius intersects the circle.	using the properties of exponents. Use properties of rational and irrational numbers
using similarity transformations the meaning of similarity for triangles as the equality of all	triangles in applied problems.	circumscribed circles of a triangle, and prove properties of angles for a quadrilateral	MCC9-12.N.RN.3 Explain why the sum or product of rational numbers is rational;
corresponding pairs of angles and the proportionality of all corresponding pairs of sides. MCC9-12.G.SRT.3 Use the properties of similarity		MCC9-12.G.C.4 (+) Construct a tangent line from a point outside a given circle to the	that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and
transformations to establish the AA criterion for two triangles to be similar.		circle. Find arc lengths and areas of sectors of	an irrational number is irrational. Perform arithmetic operations with
Prove theorems involving similarity MCC9-12.G.SRT.4 Prove theorems about		circles MCC9-12.G.C.5 Derive using similarity the	complex numbers MCC9-12.N.CN.1 Know there is a
triangles. Theorems include: a line parallel to one side of a triangle divides the other two		fact that the length of the arc intercepted by an angle is proportional to the radius, and	complex number i such that $i^2 = -1$, and every complex number has the form $a + bi$
proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.		define the radian measure of the angle as the constant of proportionality: derive the	with a and b real. MCC9-12.N.CN.2 Use the relation $i2 =$
MCC9-12.G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to prove		formula for the area of a sector. Explain volume formulas and use them to	-1 and the commutative, associative, and distributive properties to add, subtract
relationships in geometric figures.		solve problems MCC9-12.G.GMD.1 Give an informal	and multiply complex numbers. MCC9-12, N.CN.3 (+) Find the conjugate
MCC9-12.G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the		argument for the formulas for the circumference of a circle area of a circle	of a complex number; use conjugates to find moduli and quotients of complex
effect of a given rigid motion on a given figure;		volume of a cylinder, pyramid, and cone. Use dissection arguments. Cavalieri's principle	numbers. Perform arithmetic operations on
in terms of rigid motions to decide if they are		and informal limit arguments.	polynomials
congruent. MCC9-12.G.CO.7 Use the definition of		MCC9-12.G.GMD.2 (+) Give an informal argument using Cavalieri's principle for the	MCC9-12.A.APR.1 Understand that polynomials form a system analogous to

Updated 7/31/2013

		opulled //51/2011
congruence in terms of rigid motions to show that	formulas for the volume of a sphere and other	the integers, namely, they are closed
two triangles are congruent if and only if	solid figures.	under the operations of addition,
corresponding pairs of sides and corresponding	MCC9-12.G.GMD.3 Use volume formulas	subtraction, and multiplication; add,
pairs of angles are congruent.	for cylinders, pyramids, cones, and spheres to	subtract, and multiply polynomials.
MCC9-12.G.CO.8 Explain how the criteria for	solve problems.★	(Focus on polynomial expressions that
triangle congruence (ASA, SAS, and SSS) follow		simplify to forms that are linear or
from the definition of congruence in terms of rigid		quadratic in a positive integer power of
motions.		x.)
Prove geometric theorems		
MCC9-12.G.CO.9 Prove theorems about lines and		
angles. Theorems include: vertical angles are		
congruent; when a transversal crosses parallel lines,		
alternate interior angles are congruent and		
corresponding angles are congruent; points on a		
perpendicular bisector of a line segment are exactly		
those equidistant from the segment's endpoints.		
MCC9-12.G.CO.10 Prove theorems about		
triangles. Theorems include: measures of interior		
angles of a triangle sum to 180 degrees; base angles		
of isosceles triangles are congruent; the segment		
joining midpoints of two sides of a triangle is		
parallel to the third side and half the length; the		
medians of a triangle meet at a point.		
MCC9-12.G.CO.11 Prove theorems about		
parallelograms. Theorems include: opposite sides		
are congruent, opposite angles are congruent, the		
diagonals of a parallelogram bisect each other, and		
conversely, rectangles are parallelograms with		
congruent diagonals.		
Make geometric constructions		
MCC9-12.G.CO.12 Make formal geometric		
constructions with a variety of tools and methods		
(compass and straightedge, string, reflective		
devices, paper folding, dynamic geometric software.		
etc.). Copying a segment: copying an angle:		
bisecting a segment: bisecting an angle:		
constructing perpendicular lines, including the		
perpendicular bisector of a line segment: and		
constructing a line parallel to a given line through a		
point not on the line.		
MCC9-12.G.CO.13 Construct an equilateral		
triangle, a square, and a regular hexagon inscribed		
in a circle.		

---- Compater

	Secona Semester	
Unit 5	Unit 6	Unit 7
Quadratic Functions	Modeling Geometry	Applications of Probability
•		April 21 – May 23
<u>January 7 - March 7</u>	March 11 – April 18	
Common	Core Georgia Performance Stando	ards
 Use complex numbers in polynomial identities and equations. MCC9-12.N.CN.7 Solve quadratic equations with real coefficients that have complex solutions. Interpret the structure of expressions MCC9-12.A.SSE.1 Interpret expressions that represent a quantity in terms of its context.★ (Focus on quadratic functions; compare with linear and exponential functions studied in Coordinate Algebra.) MCC9-12.A.SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients.★ (Focus on quadratic functions; compare with linear and exponential functions studied in Coordinate Algebra.) MCC9-12.A.SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity.★ (Focus on quadratic functions; compare with linear and exponential functions; compare with linear and exponential functions studied in Coordinate Algebra.) MCC9-12.A.SSE.2 Use the structure of an expression to identify ways to rewrite it. (Focus on quadratic functions; compare with linear and exponential functions is compare with linear and exponential functions to solve problems MCC9-12.A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.★ (Focus on quadratic functions; compare with linear and exponential functions studied in Coordinate Algebra.) MCC9-12.A.SSE.3a Factor a quadratic expression to reveal the zeros of the function it defines.★ MCC9-12.A.SSE.3b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.★ MCC9-12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions; compare with linear and exponential functions in two or more variables and use them to solve problems. Include equation	Solve systems of equations MCC9-12.A.REL7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. Translate between the geometric description and the equation for a conic section MCC9-12.G.GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. MCC9-12.G.GPE.2 Derive the equation of a parabola given a focus and directrix. Use coordinates to prove simple geometric theorems algebraically MCC9-12.G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. (<i>Restrict</i> to context of circles and parabolas)	 Understand independence and conditional probability and use them to interpret data MCC9-12.S.CP.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").★ MCC9-12.S.CP.2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of B, and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.★ MCC9-12.S.CP.5 Recognize and explain the concepts of conditional probability on a independence in everyday language and everyday situations.★ Use the rules of probability to compute probabilities of compound events in a uniform probability model MCC9-12.S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.★ MCC9-12.S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model.★
quadratic functions; compare with linear and exponential functions		

_		opuutu	11201
	studied in Coordinate Algebra.)		
	Solve equations and inequalities in one variable		
	MCC9-12.A.REI.4 Solve quadratic equations in one variable.		
	MCC9-12.A.REI.4a Use the method of completing the square to		
	transform any quadratic equation in x into an equation of the form (x –		
	$p)^2 = q$ that has the same solutions. Derive the quadratic formula from		
	this form.		
	MCC9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for		
	$x^2 = 49$), taking square roots, completing the square, the quadratic		
	formula and factoring, as appropriate to the initial form of the equation.		
	Recognize when the quadratic formula gives complex solutions and		
	write them as $a \pm bi$ for real numbers a and b.		
	Solve systems of equations		
	MCC9-12.A.REI.7 Solve a simple system consisting of a linear		
	equation and a quadratic equation in two variables algebraically and		
	graphically.		
	Interpret functions that arise in applications in terms of the context		
	MCC9-12.F.IF.4 For a function that models a relationship between two		
	quantities, interpret key features of graphs and tables in terms of the		
	quantities, and sketch graphs showing key features given a verbal		
	description of the relationship. Key features include: intercepts;		
	intervals where the function is increasing, decreasing, positive, or		
	negative; relative maximums and minimums; symmetries; end behavior;		
	and periodicity. ★		
	MCC9-12.F.IF.5 Relate the domain of a function to its graph and,		
	where applicable, to the quantitative relationship it describes. \star (Focus		
	on quadratic functions; compare with linear and exponential functions		
	studied in Coordinate Algebra.)		
	MCC9-12.F.IF.6 Calculate and interpret the average rate of change of a		
	function (presented symbolically or as a table) over a specified interval.		
	Estimate the rate of change from a graph. \bigstar (Focus on quadratic		
	functions; compare with linear and exponential functions studied in		
	Coordinate Algebra.)		
	Analyze functions using different representations		
	MCC9-12.F.IF.7 Graph functions expressed symbolically and show		
	key features of the graph, by hand in simple cases and using technology		
	for more complicated cases. \star (Focus on quadratic functions; compare		
	with linear and exponential functions studied in Coordinate Algebra.)		
	MCC9-12.F.IF.7a Graph linear and quadratic functions and show		
	intercepts, maxima, and minima. \star		
	MCC9-12.F.IF.8 Write a function defined by an expression in different		
	but equivalent forms to reveal and explain different properties of the		
	function. (Focus on quadratic functions; compare with linear and		
	exponential functions studied in Coordinate Algebra.)		
	MCC9-12.F.IF.8a Use the process of factoring and completing the		
	square in a quadratic function to show zeros, extreme values, and		
	symmetry of the graph, and interpret these in terms of a context.		
	MCC9-12.F.IF.9 Compare properties of two functions each represented		
	in a different way (algebraically, graphically, numerically in tables, or		
	by verbal descriptions). (Focus on quadratic functions; compare with		

linear and exponential functions studied in Coordinate Algebra.)	
Build a function that models a relationship between two quantities	
MCC9-12.F.BF.1 Write a function that describes a relationship	
between two quantities. \bigstar (Focus on quadratic functions; compare with	
linear and exponential functions studied in Coordinate Algebra.)	
MCC9-12.F.BF.1a Determine an explicit expression, a recursive	
process, or steps for calculation from a context. (Focus on quadratic	
functions; compare with linear and exponential functions studied in	
Coordinate Algebra.)	
MCC9-12.F.BF.1b Combine standard function types using arithmetic	
operations. (Focus on quadratic functions; compare with linear and	
exponential functions studied in Coordinate Algebra.)	
Build new functions from existing functions	
MCC9-12.F.BF.3 Identify the effect on the graph of replacing $f(x)$ by	
f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive	
and negative); find the value of k given the graphs. Experiment with	
cases and illustrate an explanation of the effects on the graph using	
technology. Include recognizing even and odd functions from their	
graphs and algebraic expressions for them. (Focus on quadratic	
functions; compare with linear and exponential functions studied in	
Coordinate Algebra.)	
Construct and compare linear, quadratic, and exponential models	
and solve problems	
MCC9-12.F.LE.3 Observe using graphs and tables that a quantity	
increasing exponentially eventually exceeds a quantity increasing	
linearly, quadratically, or (more generally) as a polynomial function. \bigstar	
Summarize, represent, and interpret data on two categorical and	
quantitative variables	
MCC9-12.S.ID.6 Represent data on two quantitative variables on a	
scatter plot, and describe how the variables are related. \star	
MCC9-12.S.ID.6a Fit a function to the data; use functions fitted to data	
to solve problems in the context of the data. Use given functions or	
choose a function suggested by the context. Emphasize linear, quadratic,	
and exponential models.	

Updated 7/31/2013

Key Vocabulary

*adjacent angles *alternate exterior angles

*alternate interior angles *angle *bisector *centroid *circumcenter*coincidental *complementary angles *congruent

*congruent figures *corresponding angles *

corresponding sides * dilation* endpoints*

intersection *inscribed polygon *line *line

segment * linear pair *median of a triangle

*midsegment *orthocenter *parallel lines

*perpendicular bisector * perpendicular lines

*reflection *reflection line *regular polygon

angles *scale factor *similar figures *skew

*translation *transversal *vertical angles

*remote interior angles of a triangle *rotation

*same-side interior angles *same-side exterior

lines *supplementary angles *transformation

Prerequisite Skills

It is expected that students will have prior

knowledge/experience related to the concepts and

skills identified below. It may be necessary to pre-assess in order to determine if time needs to

be spent on conceptual activities that help

students develop a deeper understanding of these

ideas.

Define the following terms: circle, bisector,

Understand angle sum and exterior angle of

Know angles created when parallel lines are

Solve problems involving scale drawings of

Understand that a two-dimensional figure is

congruent to another if the second can be

obtained from the first by a sequence of

rotations, reflections, and translations.

Draw polygons in the coordinate plane

given coordinates for the vertices.

Know facts about supplementary,

Draw geometric shapes with given

complementary, vertical, and adjacent

Understand and use reflections.

translations, and rotations.

perpendicular and parallel.

Solve multi-step equations.

cut by a transversal.

geometric figures.

triangles.

angles.

conditions.

.

.

٠

٠

polygon* incenter *intersecting lines *

*plane *point *proportion *ratio *ray

equiangular * equilateral * exterior angle of a

Unit 1

Similiarity, Congruence, and Proofs

CCGPS Standards Addressed: MCC9-12.G.SRT.1-5 MCC9-12.G.CO.6-13

Suggested Learning Resources/ Performance Tasks

- GADOE CCGPS Frameworks
- Henry County Flexbooks
- Mathematics Assessment Project (www.map.mathshell.org)
- Constructions inscribed in a Circle
- Proving 2 Triangles Congruent
- Similar Triangles
- Shadow Math
- Triangle Properties Theorems (Part 1)
- Triangle Proportionality Theorem
- Proving Similar Triangles
- Hopewell
- Lunchlines
- Centers of Triangles
- Constructing with Diagonals (Modified)
- Proving Quadrilaterals in the Coordinate Plane
- Find that side or angle
- Clyde's Construction Crew

Understand similarity in terms of similarity transformations

- MCC9-12.G.SRT.1 Verify experimentally the properties of dilations given by a center and a scale factor:
 - a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
 - **b.** The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

MCC9-12.G.SRT.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

MCC9-12.G.SRT.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Prove theorems involving similarity

MCC9-12.G.SRT.4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.

MCC9-12.G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Understand congruence in terms of rigid motions

MCC9-12.G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

MCC9-12.G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

MCC9-12.G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Prove geometric theorems

MCC9-12.G.CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

MCC9-12.G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

MCC9-12.G.CO.11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Make geometric constructions

MCC9-12.G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

MCC9-12.G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Essential Question

"How can I use what I know to prove similarity and congruence using triangles?"

Enduring

<u>Understandings</u>

- enlarge or reduce a geometric figure using a given scale factor.
 - given a figure in the coordinate plane, determine the coordinates resulting from a dilation.
- compare geometric figures for similarity and describe similarities by listing corresponding parts.
- use scale factors, length ratios, and area ratios to determine side lengths and areas of similar geometric figures.
- perform basic constructions using a straight edge and compass and describe the strategies used.
- use congruent triangles to justify constructions.
- show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent (CPCTC).
- identify the minimum conditions necessary for triangle congruence (ASA, SAS, and SSS).
- understand, explain, and demonstrate why ASA, SAS, or SSS are sufficient to show congruence.
- prove theorems about lines and angles.
- prove theorems about triangles.

Students will understand...

•

prove properties of parallelograms.

CCGPS Math II/Analytic Geometry – Unit 1: Similiarity, Congruence, and Proofs

Day 2	Day 3	Day 4	Day 5
August 6	August 7	August 8	August 9
Vocabulary: Geometry basics	Basic Constructions (copying a segment, angle, bisecting an angle, perpendicular bisector) using Carnegie Book/Task	Constructions inscribed in a circle TASK	Assessment: Geometry vocabulary/constructions
Day 7	Day 8	Day 9	Day 10
August 13	August 14	August 15	August 16
Recap/ Triangle congruence/corresponding sides (SSS/ASA/SAS)	Triangle congruence (HL)- Task : Proving Triangle's congruence	More practice on triangle congruence	Formative Assessment Lesson: Triangle Congruence <u>www.map.mathshell.org</u>
Day 12	Day 13	Day 14	Day 15
August 20	August 21	August 22	August 23
Application of Dilation: AA similarity Similar Triangle Task/Notes Theorem	Shadow Math Task Application of Dilation/HW/Practice Carnegie4.1/4.6	Review/introduce proving similarity/SAS	Assessment (Concepts address during days 11-13)
Day 17	Day 18	Day 19	Day 20
August 27	August 28	August 29	August 30
Prove Pythagorean Theorem using Similarity (SRT4)/ Hopewell Task	Recap/Application & Practice	Recap/Application & Practice	Mid Unit Assessment
	Day 2 August 6 Vocabulary: Geometry basics Day 7 August 13 Recap/ Triangle congruence/corresponding sides (SSS/ASA/SAS) Day 12 August 20 Application of Dilation: AA similarity Similar Triangle Task/Notes Theorem Day 17 August 27 Prove Pythagorean Theorem using Similarity (SRT4)/Hopewell Task	Day 2Day 3August 6August 7Nocabulary:Basic ConstructionsGeometry basics(copying a segment, angle, bisecting an angle, perpendicular bisector) using Carnegie Book/TaskDay 7Day 8August 13August 14Recap/ Triangle congruence/corresponding sides (SSS/ASA/SAS)Triangle congruence (HL)-Task: Proving Triangle's congruenceDay 12Day 13August 20August 21Application of Dilation: AA similarityShadow Math Task Application of Dilation/HW/Practice Carnegie4.1/4.6Day 17Day 18August 27August 28Prove Pythagorean Theorem using Similarity (SRT4)/Hopewell TaskRecap/Application & Practice	Day 2Day 3Day 4August 6August 7August 8Vocabulary: Geometry basicsBasic Constructions (copying a segment, angle, perpendicular bisector) using Carnegie Book/TaskConstructions inscribed in a circle TASKDay 7Day 8Day 9August 13August 14August 15Recap/ Triangle congruence/corresponding sides (SSS/ASA/SAS)Triangle congruence (HL)-Task: Proving Triangle's congruenceMore practice on triangle congruenceDay 12Day 13Day 14August 20August 21August 22Application of Dilation: AA similarityShadow Math Task Application of Dilation/HW/Practice Carnegie4.1/4.6Review/introduce proving similarity/SASDay 17Day 18Day 19August 27August 28August 29Prove Pythagorean Theorem using SimilarityRecap/Application & PracticeRecap/Application & Practice

	Day 21	Day 22	Day 23	Day 24
September 2	September 3	September 4	September 5	September 6
Labor Day	Introduce the properties of lines, angles etc. vocabulary (G.CO.9) Lunchline Task HW/ Carnegie 7.5 perpendicular bisector	Discussion on Lunch Line Task – Discussion-Skill & Application (GCO.9)	Points of Concurrency introduction	Formative Assessment Lesson <u>www.map.mathshell.org</u>
Day 25	Day 26	Day 27	Day 28	Day 29
September 9	September 10	September 11	September 12	September 13
Quadrilaterals Introduction	Proving Quadrilaterals in the Coordinate Plane	Day 2 Proving Quadrilaterals in the Coordinate Plane Task	Review of Unit 1 concepts	Review of Unit 1 concepts
Day 30	Day 31			
September 16	September 17			
Unit 1 Assessment Day 1	Unit 1 Assessment Day 2			

triangles

Updated 7/31/2013

Prerequisite Skills

Key Vocabulary

*adjacent side *angle of depression * angle of elevation

* complementary angles *opposite side *similar

It is expected that students will have prior knowledge/experience related to the concepts and skills identified below. It may be necessary to pre-assess in order to determine if time needs to be spent on conceptual activities that help students develop a deeper understanding of these ideas.

- number sense
- computation with whole numbers, integers and irrational numbers, including application of order of operations
- operations with algebraic expressions
- simplification of radicals
- basic geometric constructions
- properties of parallel and perpendicular lines
- applications of Pythagorean Theorem
- properties of triangles, quadrilaterals, and other polygons
- ratios and properties of similar figures
- properties of triangles

Unit 2 Right Triangle Trignometry

CCGPS Standards Addressed: MCC9-12.G.SRT.6-8

Suggested Learning Resources/ Performance Tasks

- Find that side or angle
- Clyde's Construction Crew
- GADOE CCGPS Frameworks
- LearnZillion
- Henry County Flexbooks
- Mathematics Assessment Project (www.map.mathshell.org)

Essential Question

"How do I use similarity to derive right triangle trigonometry that model real world situations?

Enduring Understandings

Students will understand...

- Similar right triangles produce trigonometric ratios.
- Trigonometric ratios are dependent only on angle measure.
- Trigonometric ratios can be used to solve application problems involving right triangles.

Define trigonometric ratios and solve problems involving right triangles.

MCC9-12.G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

MCC9-12.G.SRT.7 Explain and use the relationship between the sine and cosine of complementary angles.

MCC9-12.G.SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

CCGPS Math II/Analytic Geometry - Unit 2: Right Triangle Trignometry

		Day 1	Day 2	Day 3	
		September 18	September 19	September 20	
		Pre-assessment and Introduce Special Right Triangles 30/36/90 and 45/45/90	Recap/Discovering Special Right Triangles Learning	Discovering Special Right Triangle Day 2	
Day 4	Day 5	Day 6	Day 7	Day 8	
September 23	September 24	September 25	September 26	September 27	
Define Trig Ratios and Explore Sine and Cosine as complements	Skills practice finding length side/angle measure using trig ratios (calculator lesson)	Reinforcing skill on finding side length/angle measure	Application (special right triangles; trig ratios)	Assessment-Special Right Triangles, Trig Ratios, Word problems	
Day 9	Day 10	Day 11	Day 12	Day 13	
September 30	October 1	October 2	October 3	October 4	
Application (with or without diagrams)	Application (with or without diagrams)	Application (with or without diagrams)	Review	Assessment Unit 2	
October 7	October 8	October 9	October 10	October 11	
Fall Break					

Unit 3

Circles and Volume

CCGPS Standards Addressed: MCC9-12.G.G.C.1-5,

Essential Question

"How do I define, evaluate, and compare characteristics of circles using tangent lines, secant lines, angles and line segments?"

Suggested Learning Resources/ Performance Tasks

GADOE CCGPS Frameworks LearnZillion Henry County Flexbooks Mathematics Assessment Project (www.map.mathshell.org)

Enduring Understandings

Students will understand...

- Understand and Apply Theorems about Circles
- Find Arc Lengths and Areas of Sectors of Circles
- Explain Volume Formulas and Use them to solve problems

Understand and apply theorems about circles

MCC9-12.G.C.1 Prove that all circles are similar.

MCC9-12.G.C.2 Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

MCC9-12.G.C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

MCC9-12.G.C.4 (+) Construct a tangent line from a point outside a given circle to the circle.

Find arc lengths and areas of sectors of circles

MCC9-12.G.C.5 Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.

Explain volume formulas and use them to solve problems

MCC9-12.G.GMD.1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.

MCC9-12.G.GMD.2 (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.

MCC9-12.G.GMD.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*

Key Vocabulary

*arc *arc length *arc measure * Cavalieri's Principle *Central Angle *Chord *circumcenter *circumscribed circle *composite figures *inscribed *inscribed angle * inscribed circle *inscribed polygon *lateral area *major and minor arcs *point of tangency *secant line *secant segment *sector *slant height *tangent line

Prerequisite Skills

The introduction to all of the parts of a circle and the relationships of all of those parts to each other will be new to students this year. The concepts of Area, Surface Area, and Volume of triangles, special quadrilaterals, and right rectangular prisms were introduced in the 6th Grade Unit 5. This knowledge was built on in the 7th Grade Unit 5 and expanded to include the slicing of right rectangular pyramids. The Volumes of Cones, Cylinders, and Spheres were previously covered in the 8th Grade Unit 3. The purpose of re-visiting these formulas here in Analytic Geometry is to formalize the students understanding of the development of these formulas; to take them from a memorization and use of the formulas to an understanding and application level.

CCGPS Math II/Analytic Geometry – Unit 3: Circles and Volume

		Sample Daily Lesson Plan		
Day 1	Day 2	Day 3	Day 4	Day 5
October 14	October 15	October 16	October 17	October 18
Task1: Circles and Relationships among angles	Task2: Investigating Angle Relationships	Task2: Investigating Angle Relationships - Application	Investigating Angle Relationships- Applications & skills practice (worksheets)	Assessment
Day 6	Day 7	Day 8	Day 9	Day 10
October 21	October 22	October 23	October 24	October 25
Task3: Chords/Secants/Tangents- Graphic organizer/ Discovery using Technology	Task3: Chords/Secants/Tangents /worksheets - segment lengths	Task3: Chords/Secants/ Tangents – word/Applications	Task3: Chords/Secants/ Tangents – Word problems /applications/Practice	Formative Assessment Lesson www.map.mathshell.org
Day 11	Day 12	Day 13	Day 14	Day 15
October 28	October 29	October 30	October 31	November 1
Task3: Chords/Secants/ Tangents Construction part 4 (Q1 & Q2)	Arc lengths/ Area of sectors	Practice/Review	Practice/Review – angles/segment lengths	Mid-Unit Assessment
Day 16		Day 17	Day 18	Day 19
November 4	November 5	November 6	November 7	November 8
Task4: Arc length & area of sector – part 1/Cookie Lab	Professional Day School Closed for Students	Task4: Arc length & area of sector – part 2/ Understanding formulas	Skills practice/ application – word problems	Assessment/arc length & area of sectors
Day 20	Day 21	Day 22	Day 23	Day 24
November 11	November 12	November 13	November 14	November 15
Task: Volume- Cylinder/cone Must know formulas	Application/ Practice	Application/ Practice	Application/ Practice	Review whole unit
Day 25	Day 26			
November 18	November 19			
Unit 3:Assessment (FR- Construction, multistep)	Unit 3: Assessment (MC)			
		Thanksgiving Break November 25 – 29, 2013		

Key Vocabulary

*binomial expression *complex conjugate *complex number *exponential functions *expression *monomial expression *nth roots *polynomial function *rational exponents *rational expression *rational number *standard form of a polygon *trinomial *whole numbers

Prerequisite Skills

It is expected that students will have prior knowledge/experience related to the concepts and skills identified below. It may be necessary to pre-assess in order to determine if time needs to be spent on conceptual activities that help students develop a deeper understanding of these ideas.

- number sense
- computation with whole numbers and integers, including application of order of operations
- operations with algebraic expressions
- simplification of radicals
- measuring length and finding perimeter and area of rectangles and squares
- laws of exponents, especially the power rule

Extend the properties of exponents to rational exponents.

MCC9-12.N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

MCC9-12.N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Use properties of rational and irrational numbers.

MCC9-12.N.RN.3 Explain why the sum or product of rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational. **Perform arithmetic operations with complex numbers.**

MCC9-12.N.CN.1 Know there is a complex number i such that $i^2 = -1$, and every complex number has the form a + bi with a and b real.

MCC9-12.N.CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

MCC9-12.N.CN.3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

Perform arithmetic operations on polynomials

MCC9-12.A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. (*Focus on polynomial expressions that simplify to forms that are linear or quadratic in a positive integer power of x.*)

CCGPS Math II/Analytic Geometry – Unit 4: Extending the Number System

		Day 1	Day 2	Day 3
		November 20	November 21	November 22
		Unit 4: Extending the Number System Introduce Rational Exponents	Introduce Rational Exponents/skills practice	Skills practice/ Rational exponents
		Thanksgiving Break November 25 – 29, 2013		
Day 4	Day 5	Day 6	Day 7	Day 8
December 2	December 3	December 4	December 5	December 6
Add & Subtract polynomials	Multiplying polynomials/ applications/word problems	Add, Subtract, Multiply polynomials & Rational exponents Review	Task: Polynomial Patterns	Formative Assessment Lesson <u>www.map.mathshell.org</u>
Day 9	Day 10	Day 11	Day 12	Day 13
December 9	December 10	December 11	December 12	December 13
Task: Imagine That/ Introduction to Complex Numbers	Review: Add & Subtract Complex Numbers	Multiply & Divide Complex Numbers	Multiply & Divide Complex Numbers	Assessment
Day 14	Day 15	Day 16	Day 17	Day 18
December 16	December 17	December 18	December 19	December 20
Review for Final Exam	Review /Final Exam	Review /Final Exam	Semester	Final Exam

CCGPS Standards Addressed:

MCC9-12.N.CN.7 MCC9-12.SSE.1-3 MCC9-12..CED.1,2,4 MCC9-12.A.REI.4,7 MCC9-12.F.IF.4-9 MCC9-12 F.BF.1 MCC912.F.BF.3 MCC9-12.S.ID.6

Key Vocabulary

*binomial expression *complex conjugate *complex number *exponential functions *expression *monomial expression *nth roots *polynomial function *rational exponents *rational expression *rational number *standard form of a polygon *trinomial *whole numbers

Unit 5 Quadratic Functions

Essential Ouestion

"How do I analyze, explain, and verify processes of solving, graphing, and comparing quadratic functions, and systems that model real life situations?"

Prerequisite Skills

It is expected that students will have prior knowledge/experience related to the concepts and skills identified below. It may be necessary to pre-assess in order to determine if time needs to be spent on conceptual activities that help students develop a deeper understanding of these ideas. * Use Function Notation *Put data into tables *Graph data from tables *Solve one variable linear equations *Determine domain of a problem situation *Solve for any variable in a multi-variable equation *Recognize slope of a linear function as a rate of change *Graph linear functions *Complex numbers *Graph

Suggested Learning Resources/ **Performance Tasks**

GADOE CCGPS Frameworks LearnZillion Henry County Flexbooks Mathematics Assessment Project (www.map.mathshell.org)

Enduring Understandings

Students will understand...

inequalities

- The graph of any quadratic function is a vertical and/or horizontal shift of a vertical stretch or shrink of the basic quadratic function $f(x) = x^2$.
- The vertex of a quadratic function provides the maximum or minimum output value of the function and the input at which it occurs.
- Every quadratic equation can be solved using the Ouadratic Formula.
- The discriminant of a quadratic equation determines whether the equation has two real roots, one real root, or two complex conjugate roots.
- · Quadratic equations can have complex solutions.

Use complex numbers in polynomial identities and equations.

MCC9-12.N.CN.7 Solve quadratic equations with real coefficients that have complex solutions.

Interpret the structure of expressions

MCC9-12.A.SSE.1 Interpret expressions that represent a quantity in terms of its context.* MCC9-12.A.SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients.* MCC9-12.A.SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity.* MCC9-12.A.SSE.2 Use the structure of an expression to identify ways to rewrite it. (Focus on quadratic functions; compare with linear and exponential functions studied in Coordinate Algebra.)

Write expressions in equivalent forms to solve problems MCC9-12.A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (Focus on quadratic functions; compare with linear and exponential functions studied in Coordinate Algebra.) MCC9-12.A.SSE.3a Factor a guadratic expression to reveal the zeros of the function it defines.* MCC9-12.A.SSE.3b Complete the square in a guadratic expression to reveal the maximum or minimum value of the function it defines.*

Create equations that describe numbers or relationships

MCC9-12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. MCC9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.* MCC9-12.A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Solve equations and inequalities in one variable MCC9-12.A.REI.4 Solve guadratic equations in one variable. MCC9-12.A.REI.4a Use the method of completing the square to transform any guadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the guadratic formula from this form. **MCC9-12.A.REI.4b** Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. Solve systems of equations MCC9-12.A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. Interpret functions that arise in applications in terms of the context. MCC9-12.F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* MCC9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* MCC9-12.F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*

Analyze functions using different representations MCC9-12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* MCC9-12.F.IF.7a Graph linear and guadratic functions and show intercepts, maxima, and minima.* MCC9-12.F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. MCC9-12.F.IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. MCC9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Build a function that models a relationship between two quantities. MCC9-12.F.BF.1 Write a function that describes a relationship between two quantities.* MCC9-12.F.BF.1a Determine an explicit expression, a recursive process, or steps for calculation from a context. MCC9-12.F.BF.1b Combine standard function types using arithmetic operations. (Focus on quadratic functions; compare with linear and exponential functions studied in Coordinate Algebra.) Build new functions from existing functions MCC9-12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. (Focus on quadratic functions; compare with linear and exponential functions studied in Coordinate Algebra.)

Construct and compare linear, guadratic, and exponential models and solve problems. MCC9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.*

Summarize, represent, and interpret data on two categorical and quantitative variables MCC9-12.S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.* MCC9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context.

Fundantial linear available and avaanatial madale

CCGPS Math II/Analytic Geometry – Unit 5: Quadratic Functions

	Day 1	Day 2	Day 3	Day 4
	January 7	January 8	January 9	January 10
Professional Learning	Diagnostic/Introduce Graphing Vertex Form	Graphing Vertex Form (embed transformations) and Characteristics	Practice	Performance-based Assessment
Day 5	Day 6	Day 7	Day 8	Day 9
January 13	January 14	January 15	January 16	January 17
Converting Standard to Vertex Form (vice versa)	Review Day 5	Graphing Standard Form using Parent Graphs revisited Task	Skills Practice	Performance-based Assessment
	Day 10	Day 11	Day 12	Day 13
	January 21	January 22	January 23	January 24
MLK Day	Application problems	Application problems/Quadratic Regression	Quadratic Regression	Formative Assessment Lesson www.map.mathshell.org
Day 14	Day 15	Day 16	Day 17	Day 18
January 27	January 28	January 29	January 30	January 31
Greatest Common Factor/Factoring a=1	Factoring when $a \neq 1$	Recap factoring and introducing solving by factoring	Practice factoring, solving, and embed graphing for students to see that the intercepts are the solutions	Assessment
Day 19	Day 20	Day 21	Day 22	Day 23
February 3	February 4	February 5	February 6	February 7
Intro to solving systems graphing and algebraically simultaneously (one linear and one quadratic)	Students could use this day to work in groups and practice concepts related to solving systems of equaitons.	Review	Review	Mid-Unit Assessment
Day 24	Day 25	Day 26	Day 27	Day 28
February 10	February 11	February 12	February 13	February 14
Solve by square roots and begin completing the square using hands-on and/or virtual models	Completing the square through modeling	Review complete the square/Introduce Quadratic Formula	Review Solving by square roots, completing the square, and quadratic formula	Assessment

Winter Break February 17-21, 2013

Day 29	Day 30	Day 31	Day 32	Day 33
February 24	February 25	February 26	February 27	February 28
Recap/Intro to solving quadratic inequalities	Solving quadratic inequalities	Solving quadratic inequalities application	Application	Formative Assessment Lesson www.map.mathshell.org
Day 34	Day 35	Day 36	Day 37	Day 1 (Unit 6)
March 3	March 4	March 5	March 6	March 7

Unit 6

Key Vocabulary

*center of a circle *circle *conic section *diameter *focus of a parabola *general form of a circle *general form a circle *parabola *Pythagorean Theorem *Radius *Standard Form of Circle

Prerequisite Skills

It is expected that students will have prior knowledge/experience related to the concepts and skills identified below. It may be necessary to preassess in order to determine if time needs to be spent on conceptual activities that help students develop a deeper understanding of these ideas.

- number sense
- computation with whole numbers and decimals, including application of order of operations
- addition and subtraction of common fractions with like denominators
- applications of the Pythagorean Theorem
- usage of the distance formula, including distance between a point and a line.
- finding a midpoint
- graphing on a coordinate plane
- completing the square
- operations with radicals
- methods of proof

Modeling Geometry

CCGPS Standards Addressed: MCC9-12.A.REI.7 MCC9-12.G.GPE.1,2,4

Suggested Learning Resources/ Performance Tasks

GADOE CCGPS Frameworks LearnZillion Henry County Flexbooks Mathematics Assessment Project (www.map.mathshell.org)

Essential Question

"How can I use the coordinate plane and algebraic methods to solve systems that model real life phenomena?"

Enduring Understandings

Students will understand...

- Write and interpret the equation of a circle
- Derive the formula for a circle using the Pythagorean Theorem
- Recognize, write, and interpret equations of parabolas
- Prove properties involving parabolas
- Prove properties involving circles
- Apply algebraic formulas and ideas to geometric figures and definitions
- The intersection of a line and a quadratic figure is the point where the two equations are equal.

Translate between the geometric description and the equation for a conic section

MCC9-12.G.GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. MCC9-12.G.GPE.2 Derive the equation of a parabola given a focus and directrix.

Use coordinates to prove simple geometric theorems algebraically

MCC9-12.G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point (0, 2).

MCC9-12.A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = -3x and the circle $x^2 + y^3 = 3$

CCGPS Math II/Analytic Geometry – Unit 6: Modeling Geometry Sample Daily Lesson Plan

	Day 2	Day 3	Day 4	Day 5
Professional Learning	March 11	March 12	March 13	March 14
Day	Converting Standard Form to	Finish yesterday's task and		Performance-based/task-based
[School Closed for	General Form (factorable) and	practice converting standard	Application of writing circle	assessment
Students]	Complete the Square in a Circle	form of a circle to general form	equation	ussessment
	Tasks	of a circle		
Day 6	Day 7	Day 8	Day 9	Day 10
March 17	March 18	March 19	March 20	March 21
Deriving the general equation of a parabola	Practice writing the equation of a parabola given the focus and the directrix	Parabolas in other directions Task	Finish yesterday's task and practice	Formative Assessment Lesson www.map.mathshell.org
Day 11	Day 12	Day 13	Day 14	Day 15
March 24	March 25	March 26	March 27	March 28
The intersection of a line and quadratics task (use as notes)	Practice	Review/Application	Review/Application	Formative Assessment Lesson www.map.mathshell.org
Day 16	Day 17	Day 18	Day 19	Day 1 (Unit 7)
March 31	April 1	April 2	April 3	April 4
Performance-based activity on quadratics (incorporate graphing calculator activity here)	Algebraic Proof Task	Algebraic Proof Task	Unit Assessment	Unit Assessment

Spring Break April 7-11, 2013

<u>Key Vocabulary</u>

*addition rule *complement *conditional probability *dependent events *element *independent events *intersection of sets *multiplication rule for independent events *mutually exclusive events *outcome *overlapping events *sample space *set *subset *union of sets *Venn Diagram

Prerequisite Skills

It is expected that students will have prior knowledge/experience related to the concepts and skills identified below. It may be necessary to preassess in order to determine if time needs to be spent on conceptual activities that help students develop a deeper understanding of these ideas.

- Understand the basic nature of probability
- Determine probabilities of simple and compound events
- Organize and model simple situations involving probability
- Read and understand frequency tables

Unit 7 Applications of Probablity

CCGPS Standards Addressed: MCC9-12.S.CP.1-7

Suggested Learning Resources/ Performance Tasks

GADOE CCGPS Frameworks LearnZillion Henry County Flexbooks Mathematics Assessment Project (www.map.mathshell.org)

Enduring

of compound events?

Understandings

Students will understand...

- Use set notation as a way to algebraically represent complex networks of events or real world objects.
- Represent everyday occurrences mathematically through the use of unions, intersections, complements and their sets and subsets.
- Use Venn Diagrams to represent the interactions between different sets, events or probabilities.
- Find conditional probabilities by using a formula or a two-way frequency table.
- Understand independence as conditional probabilities where the conditions are irrelevant.
- Analyze games of chance, business decisions, public health issues and a variety of other parts of everyday life can be with probability.
- Model situations involving conditional probability with two-way frequency tables and/or Venn Diagrams.
- Confirm independence of variables by comparing the product of their probabilities

Understand independence and conditional probability and use them to interpret data

MCC9-12.S.CP.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). *

MCC9-12.S.CP.2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. *

MCC9-12.S.CP.3 Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. \star

MCC9-12.S.CP.4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. *

MCC9-12.S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. *

Use the rules of probability to compute probabilities of compound events in a uniform probability model

MCC9-12.S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. *** MCC9-12.S.CP.7** Apply the Addition Rule, P(A or B) = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model. *****

RELATED STANDARDS

Investigate chance processes and develop, use, and evaluate probability models.

MCC7.SP.5 Understand that the probability of a chance event is a number between 0 and 1

that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

MCC7.SP.8a Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.

MCC7.SP.8b Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.

Updated 7/31/2013 Essential Question

"How can I make predictions using theoretical probabilities

CCGPS Math II/Analytic Geometry – Unit 7: Applications of Probablity

Day 2	Day 3	Day 4	Day 5	Day 6
April 14	April 15	April 16	April 17	April 18
Overview of Probability	How Odd GaDOE Frameworks Task Review of Venn Diagrams, set notation and the addition rule	Review How Odd GADOE Task (Review of Venn Diagrams, set notation and the addition rule)	The Conditions are Right Learning Task [Partner/Small Group Task] Discuss Conditional probability and frequency tables	Administer Formative Assessment Lesson (Modeling Conditional Probabilities 1: Lucky Dip) www.map.mathshell.org
Day 7	Dav 8	Day 9	Day 10	Day 11
April 21	April 22	April 23	April 24	April 25
The Land of Independence Performance Task Individual/Partner/ Small Group Task Independence	Medical Testing Formative Assessment LessonImplement a strategy to solve conditional probabilities.	False Positives Achieve CCSS- CTE Classroom Tasks Exploring conditional probability using a variety of methods.	Culminating Performance Task Are You Positive? Assessment over Conditional probability and frequency tables, independence, addition rule	Culminating Performance Task Are You Positive? Assessment over Conditional probability and frequency tables, independence, addition rule
Day 12	Day 13	Day 14	Day 15	Day 16
April 28	April 29	April 30	May 1	May 2
Assessment over Unit 7 - Probability	EOCT REVIEW	EOCT REVIEW	EOCT REVIEW	EOCT REVIEW
Day 17	Day 18	Day 19	Day 20	Day 21
May 5	May 6	May 7	May 8	May 9
EOCT Review	EOCT (Math) STATE TESTING DAY	Begin Final Exam Project	Final Exam Project	Final Exam Project
Day 22	Day 23	Day 24	Day 25	Day 26
May 12	May 13	May 14	May 15	May 16
	Final Exam Project	Final Exam Project	Final Exam Project	Final Exam Project
Day 27	Day 28	Day 28	Day 29	Day 30
May 19	May 20	May 21	May 22	May 23
	Final Exam Project Presentations	Final Exam Project Presentations	Final Exam Project Presentations	Last Day of School Final Exam Project Presentations