MAFS.912.G-SRT.2.5	Use congruence and similarity criteria for triangles to solve problems
	and to prove relationships in geometric figures.
Item Types	Editing Task Choice – May require choosing a statement in an informal
	argument or narrative proof.
	Equation Editor – May require expressing a value or an expression.
	GRID – May require constructing a proof from a list of given postulates.
	Hot Text – May require constructing a proof or dragging and dropping
	steps to prove a relationship in a geometric figure.
	Multiple Choice – May require selecting from choices
	Multiple choice – May require selecting norm choices.
	Open Response – May require writing an informal argument or
	explanation.
Clarifications	Students will use congruence criteria for triangles to solve problems.
	Students will use congruence criteria for triangles to prove relationships
	in geometric figures.
	Students will use similarity criteria for triangles to solve problems.
	Students will use similarity criteria for triangles to prove relationships in
	geometric figures.
Assessment Limit	Items may use geometric figures of any shape if the figure can be
	deconstructed to form a triangle.
Stimulus Attribute	Items may be set in a real-world or mathematical context.
Response Attribute	Items may require the student to use or choose the correct unit of
	measure.
Calculator	Neutral

Sample Item	Item Type	
	Editing Task Choice	
Gabriel wrote a partial narrative proof to prove $\overline{FD} \cong \overline{BD}$.		
Given: \overrightarrow{AD} bisects $\angle EAC$ $\angle FDA \cong \angle BDA$ A		
Prove: $\overline{FD} \cong \overline{BD}$		
F, B		
There are three highlights in the paragraph to show blanks in the proof. For each highlight, click on the word or phrase to fill in the blank.		
It is given that \overline{AD} bisects $\angle EAC$, and $\angle FDA \cong \angle BDA$. Since \overline{AD} bisects $\angle EAC$, then $\angle DAE \cong \angle DAC$ from the definition of angle bisector. $\overline{AD} \cong \overline{AD}$ by the reflexive property. $\triangle _?_ \cong \triangle _?_$ because of $_?_$. Therefore, $\overline{FD} \cong \overline{BD}$ because corresponding parts of congruent triangles are congruent.		