ELECTROMAGNETIC WAVES AND LIGHT

ELECTROMAGNETIC WAVES

Electromagnetic Waves travel through empty space or through matter and are produced by charged particles that are in motion.

ELECTROMAGNETIC WAVES

Transverse, non-mechanical waves.

- Electromagnetic waves are produced by charged particles, such as electrons, that move back and forth or vibrate.
- As a charged particle vibrates by moving up and down or back and forth, it produces changing electric and magnetic fields that move away from the vibrating charge in many directions.

- These changing fields travel in many directions.
- They form an electromagnetic wave.

PARTICLE OR WAVE?

Light can

- Behave as a particle called a PHOTON whose energy depends on the frequency of light.
- Behave as a wave whose energy depends on its frequency.

PROPERTIES OF EM WAVES

- Electromagnetic waves have a wavelength and a frequency.
- One complete vibration of the charged particle up and down creates one wavelength.
- The number of wavelengths that pass by a point in one second is the frequency of the electromagnetic wave and is measured in hertz, Hz.

PROPERTIES OF EM WAVES

The amount of energy carried by an electromagnetic wave is determined by its frequency.

The higher the frequency, the more energy the EM wave has.

THE SPEED OF LIGHT

Electromagnetic waves travel at the speed of light, 300,000 km/s, in the vacuum of space.

- ➢ Vacuum means "empty of matter".
 - Even though light travels incredibly fast, stars other than the Sun are so far away that it takes years for the light they emit to reach Earth.

THE SPEED OF LIGHT

- Light travels almost a million times faster than sound.
- The speed of light is so important in physics that it is given its own symbol, a lower case *c*.

ELECTROMAGNETIC WAVES

Electromagnetic waves have a series of different frequencies and wavelengths called the electromagnetic spectrum.

ELECTROMAGNETIC WAVES

For waves that travel with the same speed, wavelength increases as frequency decreases.
 We will look at radio, microwave, radar, infrared, visible, ultraviolet, x-rays, and gamma rays.

RADIO WAVES

- The lowest frequency
- The longest wavelength (longer than 0.3 m)
- The **least** energy.
 - AM and FM radio signals and TV signals are types of radio waves.
 - they can be sent with radio waves using a transmitting and receiving antenna.

RADIO WAVES

AM radio waves are "amplitude modulated".
FM radio waves are "frequency modulated".

MICROWAVES

higher frequency than radio waves.

shorter wavelength than radio waves (between 0.3 m and 0.001m).

More energy than radio waves.
they are used for some phone calls and to heat food.

MICROWAVES

- The idea of using microwave energy to cook food was **accidentally** discovered by Percy Spencer of the Raytheon Company.
- He found that radar waves had melted a candy bar in his pocket.
- Experiments showed that microwave heating could raise the internal temperature of many foods far more rapidly than a conventional oven.

RADAR

- **RA**dio Detection And Ranging **Similar** to microwaves.
- uses electromagnetic waves to locate objects by measuring the time it takes for the waves to reach the object, be reflected, and return.

INFRARED, IR

has a greater frequency than microwaves.
has wavelengths between 0.001m and 0.000007m.
has more energy than microwaves.
feel warm or hot; basically this is thermal energy.

Infrared detectors sense objects that are warmer or colder than their environment; TV and VCR remotes also use IR waves.

Some animals, such as piranhas and rattlesnakes, can detect infrared waves, which helps them find prey.

1.6

FLIR Dist = 1.0 Trefl = 20.0 ε = 0.95

VISIBLE LIGHT

> Higher frequency than IR.
 > Shorter wavelength than IR; between 0.7 and 0.4 millionths of a meter.
 > More energy than IR
 > "infra" means below – "below red".

VISIBLE LIGHT

- ROY G BIV Red, orange, yellow, green, blue, indigo, violet
- Red light has the longest wavelength and lowest frequency.
- Blue light has the shortest wavelength and highest frequency.

ULTRAVIOLET RADIATION, UV

The sun

higher frequency than visible light.
shorter wavelength than visible light.
More energy than visible light.
"ultra" means beyond – beyond violet.
Enough energy to penetrate the skin.

ULTRAVIOLET RADIATION, UV

- Too much exposure to ultraviolet radiation from the Sun can cause sunburn and other health problems.
- Since U.V. radiation can kill cells, it is sometimes used to sterilize equipment.
- The ozone in Earth's upper atmosphere helps protect the surface by absorbing much of the sun's U.V. radiation.

- Much of the ultraviolet radiation arriving at Earth is absorbed in the upper atmosphere by ozone.
- Ozone is a molecule that has three oxygen atoms and is formed high in the Earth's atmosphere.
- Chemical compounds called CFCs, which are used in air conditioners and refrigerators, can react with ozone molecules and break them apart.

X RAYS

Higher frequency than UV.
Shorter wavelength than UV.
Higher energy than UV.
Enough energy to go through soft tissue.
Too much exposure to X-rays can damage or kill cells.
X-rays are useful in medical diagnosis if used with appropriate precautions.

GAMMA RAYS

- **Higher** frequency than UV.
- **Shorter** wavelength than UV.
- **Higher** energy than UV.
- > Enough energy to go through all tissue.
- Too much exposure to gamma rays can damage or kill cells.
- Gamma rays, which have the highest frequency, can be used to treat cancer and to kill bacteria in food.

YOUR SPECTRUM

TO DO

Handout due tomorrow.