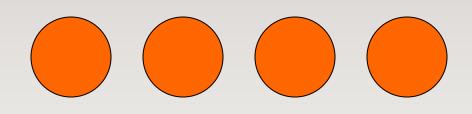

Charging by: Friction, Contact and Induction

1.Friction 2.Contact 3.Induction

Material	Strength of Hold on Electrons
Glass	Weak
Human hair	
Nylon	
Wool	
Fur	
Silk	
Cotton	
Lucite (a clear plastic)	
Rubber balloon	
Polyester	
Foam	
Grocery bags (low density polyethylene)	
Ebonite (a hard form of rubber)	Strong

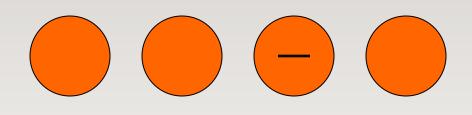
Static Electricity - Review

- 1) Opposites attract
- 2) Likes repel
- 3) + and attracts neutral objects

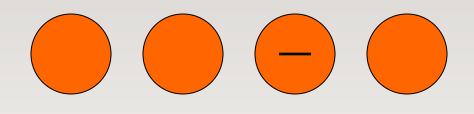


Pith Ball – Neutral non-conductive object which hangs from an insulting string \rightarrow Demonstration

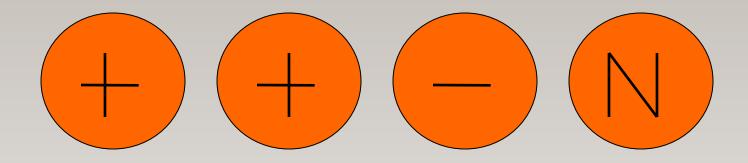
Using the law of electric charges, identify the charge of the pith balls described below:


- Four pith balls are suspended by insulating threads. The following observations are made:
- a) Pith ball #3 is negatively charged
- b) Pith ball #4 attracts all the other pith balls
- c) Pith balls #1 and #2 repel each other
- d) Pith ball #3 attracts all other pith balls

Start by drawing what you know 4 balls


- a) Pith ball #3 is negatively charged
- b) Pith ball #4 attracts all the other pith balls
- c) Pith balls #1 and #2 repel each other
- d) Pith ball #3 attracts all other pith balls

Start by drawing what you know #3 is negative


- a) Pith ball #3 is negatively charged
- b) Pith ball #4 attracts all the other pith balls
- c) Pith balls #1 and #2 repel each other
- d) Pith ball #3 attracts all other pith balls

Use the remaining information to help solve the problem. Remember the law of attraction!!!!

- a) Pith ball #3 is negatively charged
- b) Pith ball #4 attracts all the other pith balls
- c) Pith balls #1 and #2 repel each other
- d) Pith ball #3 attracts all other pith balls

Reasoning:

Observation c tells us that **#1 and #2 are the** <u>same charge and the neither is neutral</u>

Observation d tells us that **#1 and #2 must both be positive since #3 is negative**

Observation b tells us that <u>#4 is neutral since</u> <u>it attracts both negatives and positives.</u>

Charging Objects

There are 3 ways an object can become charged

Friction Contact Induction

Friction Review

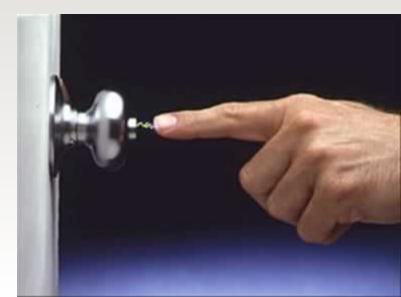
- z Static electricity is produced by rubbing different surfaces together
- z This causes both surfaces to obtain a different charge
- z Before rubbing: both objects are neutral

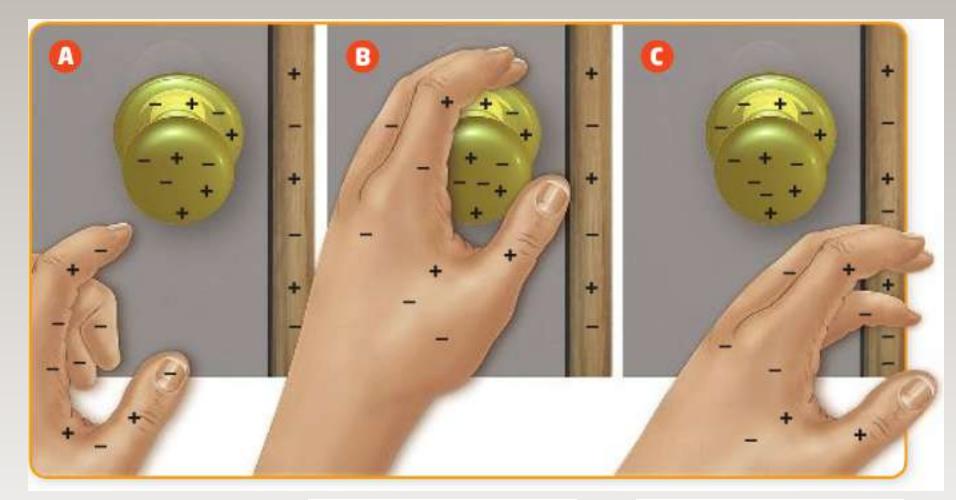
Z After rubbing, one object loses electrons (becomes positively charged), the other object gains electrons and becomes negatively charged

Electrostatic Series

Z The electrostatic series is a list that is used to determine the charge an object gains by friction

Z Objects higher on the chart hold their electrons weakly


Material	Strength of Hold on Electrons
Glass	Weak
Human hair	
Nylon	
Wool	
Fur	
Silk	
Cotton	
Lucite (a clear plastic)	
Rubber balloon	
Polyester	
Foam	
Grocery bags (low density polyethylene)	
Ebonite (a hard form of rubber)	Strong


Contact Transfer

- z Contact is common and is the cause of static shocks.
- Z Contact transfer occurs when a charged object is brought into contact with a differently charged object. (This includes neutral objects)
- Z Some or all of the electrons will transfer between the two objects in an attempt to balance the charge.

Static Shocks

- In the case of static electricity, your body has developed some level of negative charge.
- When you move your hand towards an uncharged objects (especially metals) the excess electrons you have transfer to that object.
- Z The movement of the electrons can sometimes be seen as a spark and can occasionally be painful due to the speed at which the electrons transfer.

A The hand has a negative charge (a surplus of electrons). **B** If the hand touches the metal doorknob, there is a rapid transfer of electrons, and a shock is felt.

C If the hand touches the wooden doorframe, there is a slower transfer of electrons, and no shock is felt.

Charging by contact using a negative rod.

×

Charging by contact using a positive rod

×

Induction

Z An electric charge is transferred from one substance to another without direct contact.

Z The induced charge is opposite to that of the charged object producing the charge

Induced Charge Separation

Z A shift in position of the electrons that produces opposite charge on TWO sides of a particle

+

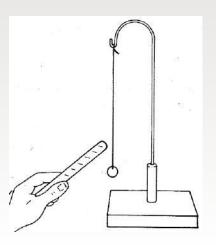
×

Charging by induction

- Z To charge the neutral object, the neutral object MUST be grounded using a conducting wire (not shown)
- Z This gives the electrons a place to leave
 Image: Second state of the secon

+

Charging by induction using a positive rod


×

Charging by induction using a negative rod

×

Pith Balls and Charge Transference

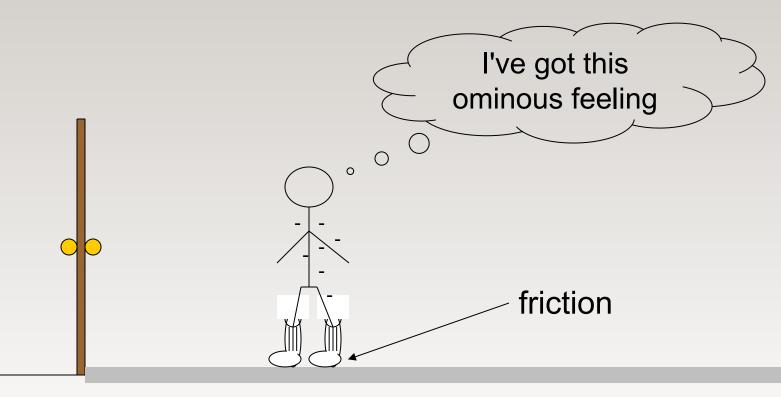
- Z Pith balls by nature are usually uncharged to begin with (as are most objects)
 - y How would you expect them to react to a charged object brought nearby?
- Z If a charged object and a pith ball are brought in contact some of that charge will transfer to the pith ball. (Either the pith ball will gain or lose electrons)

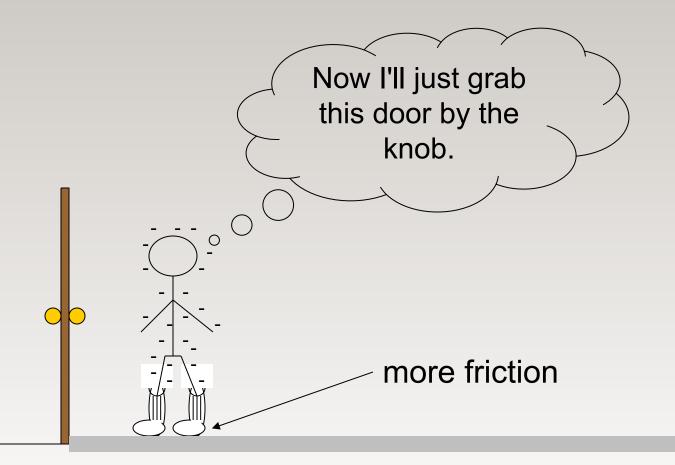
Pith Balls and Charge Transference

z Once the charged object is removed the charge remains on the pith ball

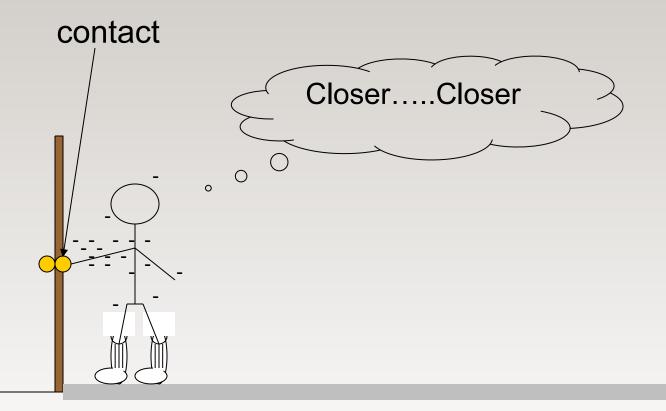
y How would you expect the pith ball to react if another similarly charged object were brought near to it?

y How would it react if an oppositely charged object were near?


Drawing!


Z In your notes draw a picture of the following situation. You should have at least three pictures to depict the scene.

Z A neutral pith ball is brought near to a negatively charged rod. The pith ball and the rod touch. The rod is removed and a different negatively charged object is brought near.



Carpet

Create a comparison chart z Use a chart to compare the following topics covered so far

- y Charging by friction
- y Charging by contact
- y Charging by induction

Z Your chart should have the following headings for each topic

Topic	How it's charged	Charge it receives relative to charged exposed to	Does the altered charged last?
From above	Describe how the	Is the charge the object receives	When the object is
	object becomes	the same , or opposite to the	isolated will it retain
	charged	object that gave it that charge?	the charge it was given?