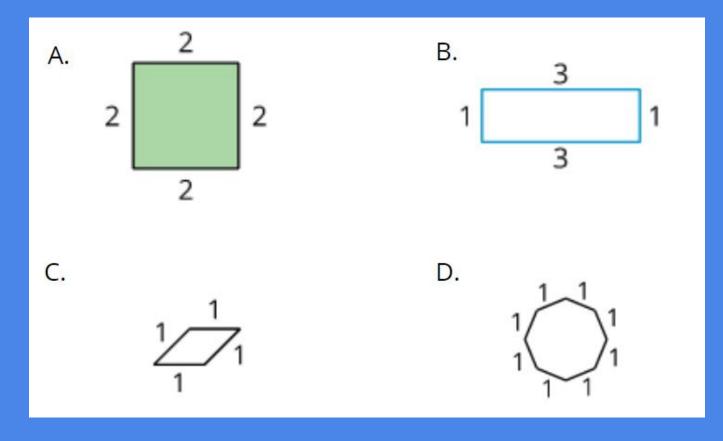
CONSTRUCTION TECHNIQUES 5: Squares

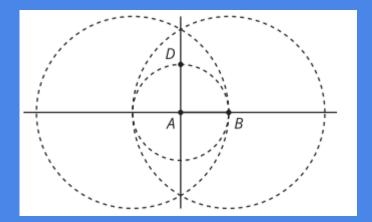


LEARNING GOAL

Picture Source wordset

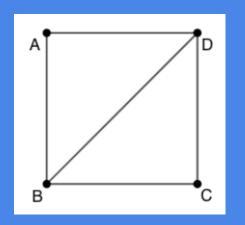
Let's use straightedge and compass moves to construct squares.

7.1 WHICH ONE DOESN'T BELONG: POLYGONS



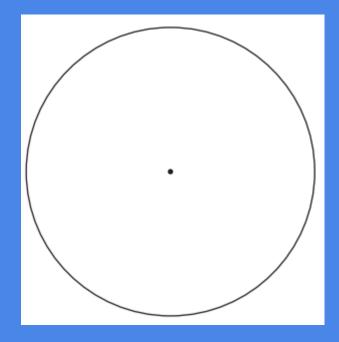
7.2 IT'S COOL TO BE SQUARE

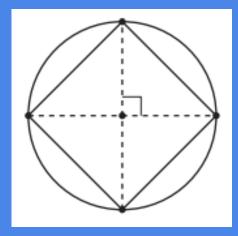
Use straightedge and compass tools to construct a square with segment *AB* as one of the sides.


ACTIVITY SYNTHESIS

HOW DO YOU KNOW THAT WHAT YOU CONSTRUCTED IS A SQUARE?

7.3 TRYING TO CIRCLE A SQUARE


1. Here is square *ABCD* with diagonal *BD* drawn:


- a. Construct a circle centered at *A* with radius *AD*.
- b. Construct a circle centered at *C* with radius *CD*.
- c. Draw the diagonal AD and write a conjecture about the relationship between the diagonals BD and AC.
- d. Label the intersection of the diagonals as point *E* and construct a circle centered at *E* with radius *EB*. How are the diagonals related to this circle?

7.3 TRYING TO CIRCLE A SQUARE

2. Use your conjecture and straightedge and compass moves to construct a square inscribed in a circle.

ACTIVITY SYNTHESIS

HOW WAS THIS CONSTRUCTION DIFFERENT FROM THE SQUARE IN THE PREVIOUS ACTIVITY?

CONJECTURE THAT THE ENTIRE CONSTRUCTION REMAINS THE SAME EVEN WHEN ROTATED $\frac{1}{4}$ of a full turn (90 degrees) around the center. This means that each side can be rotated onto the other sides, and each angle can be rotated onto the other angles.

LESSON SYNTHESIS

WE HAVE NOW CONSTRUCTED:

- EQUILATERAL TRIANGLE
- REGULAR HEXAGON
- SQUARE

ALL INSCRIBED IN A CIRCLE.

These are all **regular polygons**, which is a polygon with all congruent sides and all congruent angles. STARTING WITH ANY OF THESE SHAPES, WHICH CONSTRUCTION TECHNIQUES WOULD HELP YOU MAKE OTHER REGULAR POLYGONS INSCRIBED IN CIRCLES?