RATIONAL EXPONENTS

Laws of Exponents

Multiplication Properties

- Product of powers
- Power to a power
- •Power of a product

Zero and negative exponents

Division properties of exponents

- Quotient of powers
- •Power of a quotient

Basic Terminology

Exponent – In Exponential notation, the number of times the base is used as a factor.

Base – In Exponential notation, the number or Variable that undergoes repeated MULTIPLICATION.

Important Examples

IMPORTANT EXAMPLES

$$-3^4$$
 means $-(3 \times 3 \times 3 \times 3) = -81$

$$(-3)^4$$
 means $(-3)\times(-3)\times(-3)\times(-3)=81$

$$-3^3 \ means \ -(3 \times 3 \times 3) = -27$$

$$(-3)^3$$
 means $(-3) \times (-3) \times (-3) = -27$

Variable Examples

Variable Expressions

 x^5 means (use parentheses for multiplication) (x)(x)(x)(x)

 y^3 means (y)(y)(y)

Substitution and Evaluating

STEPS

- 1. Write out the original problem.
- 2. Show the substitution with parentheses.
- 3. Work out the problem.

Example: Solve if
$$x = 4$$
; x^3

Solve if
$$x = 4$$
; x^3

$$(4)^3 = 64$$

More Examples

Evaluate the variable expression when x = 1, y = 2, and w = -3

$$(x)^{2} + (y)^{2} \qquad (x + y)^{2} \qquad wx^{y}$$

$$Step \qquad Step \qquad Step \qquad 1$$

$$(x)^{2} + (y)^{2} \qquad (x + y)^{2} \qquad wx^{y}$$

$$Step 2 \qquad Step 2 \qquad Step 2 \qquad Step \qquad 2$$

$$(1)^{2} + (2)^{2} \qquad ((1) + (2))^{2} \qquad (-3)(1)^{2}$$

$$Step 3 \qquad Step 3 \qquad Step \qquad 3$$

$$1 + 4 = 5 \qquad (3)^{2} = 9 \qquad (-3)(1) = -3$$

PRODUCT OF POWERS

This property is used to combine 2 or more exponential expressions with the SAME base.

$$2^3 \times 2^5 \longrightarrow (2 \times 2 \times 2)(2 \times 2 \times 2 \times 2) \longrightarrow 2^{3+5} \longrightarrow 2^8 \longrightarrow 256$$

$$(x^3)(x^4) \longrightarrow ((x)(x)(x))((x)(x)(x)(x)) \longrightarrow x^{3+4} \longrightarrow x^7$$

POWER TO A POWER

This property is used to write and exponential expression as a single power of the base.

$$(5^2)^3 \longrightarrow (5^2)(5^2)(5^2) \longrightarrow 5^6$$

$$(x^2)^4 \longrightarrow (x^2)(x^2)(x^2) \longrightarrow \chi^8$$

POWER OF PRODUCT

This property combines the first 2 multiplication properties to simplify exponential expressions.

$$(-6 \times 5)^2$$
 $(-6)^2 \times (5^2)$ $36 \times 25 = 900$

$$(5xy)^3 \longrightarrow (5^3)(x^3)(y^3) \longrightarrow 125x^3y^3$$

$$(4x^2)^3 \bullet x^5 \longrightarrow (4^3)(x^2)^3 \bullet x^5 \longrightarrow (64)(x^2)(x^2)(x^2) \bullet x^5$$

$$(64)(x^6) \bullet x^5 \longrightarrow 64x^{11}$$

SUMMARY

PRODUCT OF RAWERS **EXPONENTS**

POWER TO A ROWFRIE **EXPONENTS**

$$x^a \bullet x^b = x^{a+b}$$

$$\left(x^a\right)^b = x^{a \bullet b}$$

POWER OF PRODUCT $(xy)^a = x^a y^a$

$$(xy)^a = x^a y^a$$

DISTRIBUTE THE **EXPONENT**

ZERO AND NEGATIVE EXPONENTS

ANYTHING TO THE ZERO POWER IS 1.

$$3^3 = 27$$
 $3^2 = 9$
 $3^1 = 3$

$$3^0 = 1$$

$$3^{-1} = \frac{1}{3^1} = \frac{1}{3}$$

$$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$

$$3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$

$$2x^{-2} = 2\left(\frac{1}{x^2}\right) = \frac{2}{x^2}$$

$$(2x)^{-2} = \frac{1}{(2x)^2} = \frac{1}{2^2 x^2} = \frac{1}{4x^2}$$

$$\frac{1}{3^{-4}} = 1 \times \frac{3^4}{1} = 3^4 = 81$$

DIVISION PROPERTIES

QUOTIENT OF POWERS

This property is used when dividing two or more exponential expressions with the same base.

$$\frac{x^5}{x^3} = \frac{(x)(x)(x)(x)(x)}{(x)(x)(x)} = \frac{(x)(x)}{1} = x^2$$

$$\frac{X^{-3}}{X^4} = \frac{1}{X^3} \div X^4 = \frac{1}{X^3} \times \frac{1}{X^4} = \frac{1}{X^7}$$

DIVISION PROPERTIES

POWER OF A QUOTIENT

$$\left(\frac{x^2}{y^3}\right)^4 = \frac{(x^2)^4}{(y^3)^4} = \frac{x^8}{y^{12}}$$

Hard Example

$$\left(\frac{2xy^{-2}}{3x^3y^{-4}}\right)^3 = \frac{(2xy^{-2})^3}{(3x^3y^{-4})^3} = \frac{2^3x^3y^{-6}}{3^3x^9y^{-12}} = \frac{8x^3y^{12}}{27x^9y^6} = \frac{1}{27x^9y^6}$$

$$\frac{8x^3y^{12}}{27x^6y^6} = \frac{8y^6}{27x^6}$$

Summary of Zero, Negative, and Division Properties

ZERO, NEGATIVE, AND DIVISION **PROPERTIES**

Zero power
$$(x)^0 = 1$$

Negative Exponents

$$x^{-a} = \frac{1}{x^a}$$
and

$$\frac{1}{x^{-a}} = x^a$$

Quotient of powers

$$\frac{x^a}{x^b} = x^{a-b}$$

Power of a quotient

$$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$$