The Laws of Exponents

Example: $125 = 5^3$ means that 5^3 is the exponential form of the number 125.

5³ means 3 factors of 5 or 5 x 5 x 5

The Laws of Exponents:

#1: Exponential form: The exponent of a power indicates how many times the base multiplies itself.

$$x_{n}^{n} = x \cdot x \cdot x_{4} \cdot 2 \cdot x_{4} \cdot x_{4} \cdot x_{4} \cdot x_{4}$$

$$n-times$$

$$n \text{ factors of } x$$

Example: $5^{\circ} = 5 \cdot 5 \cdot 5$

#2: Multiplying Powers: *If you are multiplying Powers with the same base, KEEP the BASE & ADD the EXPONENTS!*

$$x^m \cdot x^n = x^{m+n}$$

#3: Dividing Powers: *When dividing Powers with the same base, KEEP the BASE & SUBTRACT the EXPONENTS!*

$$\frac{x^m}{x^n} = x^m \div x^n = x^{m-n}$$

Try these:

1.
$$3^2 \times 3^2 =$$

2.
$$5^2 \times 5^4 =$$

3.
$$a^5 \times a^2 =$$

4.
$$2s^2 \times 4s^7 =$$

5.
$$(-3)^2 \times (-3)^3 =$$

$$6. \quad s^2 t^4 \times s^7 t^3 =$$

7.
$$\frac{s^{12}}{s^4} =$$

8. $\frac{3^9}{3^5} =$
9. $\frac{s^{12}t^8}{s^4t^4} =$
10. $\frac{36a^5b^8}{4a^4b^5} =$

SOLUTIONS 1. $3^2 \times 3^2 = 3^{2+2} = 3^4 = 81$ $2. \quad 5^2 \times 5^4 = 5^{2+4} = 5^6$ 3. $a^5 \times a^2 = a^{5+2} = a^7$ 4. $2s^2 \times 4s^7 = 2 \times 4 \times s^{2+7} = 8s^9$ 5. $(-3)^2 \times (-3)^3 = (-3)^{2+3} = (-3)^5 = -243$ 6. $s^{2}t^{4} \times s^{7}t^{3} = s^{2+7}t^{4+3} = s^{9}t^{7}$

#4: Power of a Power: *If you are raising a Power to an exponent, you multiply the exponents!*

$$(x^m)^n = x^{mn}$$

So, when I take a Power to a power, I multiply the exponents

#5: Product Law of Exponents: If the product of the bases is powered by the same exponent, then the result is a multiplication of individual factors of the product, each powered by the given exponent.

$$(xy)^n = x^n \cdot y^n$$

So, when I take a Power of a Product, I apply the exponent to all factors of the product.

#6: Quotient Law of Exponents: If the quotient of the bases is powered by the same exponent, then the result is both numerator and denominator, each powered by the given exponent.

So, when I take a Power of a Quotient, I apply the exponent to all parts of the quotient.

Try these:

1.
$$(3^{2})^{5} =$$

2. $(a^{3})^{4} =$
3. $(2a^{2})^{5} =$
4. $(2^{2}a^{5}b^{3})^{5} =$
5. $(-3a^{2})^{2} =$
6. $(s^{2}t^{4})^{5} =$

SOLUTIONS 1. $(3^2) = 3^{10}$ 2. $(a^3)^{\dagger} = a^{12}$ 3. $(2a^2)^3 = 2^3 a^{2\times 3} = 8a^6$ 4. $(2^2 a^5 b^3)^2 = 2^{2^{\chi} 2} a^{5^{\chi} 2} b^{3^{\chi} 2} = 2^4 a^{10} b^6 = 16a^{10} b^6$ 5. $(-3a^2)^2 = (-3)^2 \times a^{2\times 2} = 9a^4$ 6. $(s^2t^4) = s^{2\times 3}t^{4\times 3} = s^6t^{12}$

#7: Negative Law of Exponents: If the base is powered by the negative exponent, then the base becomes reciprocal with the positive exponent.

So, when I have a Negative Exponent, I switch the base to its reciprocal with a Positive Exponent.

Ha Ha!

If the base with the negative exponent is in the denominator, it moves to the numerator to lose its negative sign!

#8: Zero Law of Exponents: Any base powered by zero exponent equals one.

So zero factors of a base equals 1. That makes sense! Every power has a coefficient of 1.

AaBbCcDdEeFfGgHhIijjKkLiMmNn $5^{\circ} = 1$ and $a^{0} = 1$ and $(5a)^0 = 1$

Try these:

1. $(2a^2b)^2 =$ 2. $y^2 \times y^{-4} =$ 3. $(a^5)^1 =$ 4. $s^{-2} \times 4s^{7} =$ 5. $(3x^{-2}y^3)^4 =$ 6. $(s^2t^4) =$

SOLUTIONS $1.(2a^2b) = 1$ 2. $v^2 \times v^{-4} =$ $3. \left(a^5\right)^1 = \frac{\mathbf{1}}{a^5}$ 4. $s^{-2} \times 4s^7 = 4s^5$ x^8 5. $(3x^{-2}y^3)^4 = (3^{-4}x^8y^{-12})^4$ $81y^{12}$ 6. $(s^2 t^4) =$

SOLUTIONS \mathcal{X} 4 X ${\mathcal X}$ 3⁹ -2 8 2 8. 38 S -2 $^{4}t^{4}$ 9. S h^{10} -2 $36a^{5}$ 10 9 $81a^{2}$ 5