| Name: _ | | Date: | Period: | |-------------|---|---|---| | | | nservation of M | ass Worksheet | | 1) 40
2) | g of potassium reacts with 14 g of lithium reaction with 4 g of magnesium reacts with 38 5.5 g copper reacts with g g of strontium reacts with 160 g g of sodium reacts with g iron reacts with 71 g chlori g of barium reacts with | f chlorine to prod
6 g of oxygen to
g sulfur to prod
g of fluorine to prod
g bromine to prod
g chlorine to prod
g chlorine to prod
ne to produce 12
g iodine to prod
g of oxygen to prod | roduce g magnesium fluoride. ce 81 g copper (I) oxide. luce g strontium bromide. luce 117 g sodium chloride. 9 g of iron (II) chloride. | | 12) Id | lentify the type of reaction and ba ANaOH +HCl→ | | _ | | | BH ₂ +O ₂ →H ₂ O | | Type: | | | CCl₂+NaBr→Na | aCl +Br ₂ | Type: | | | DH ₂ O +Fe \rightarrow F | $e_2O_3 + _H_2$ | Type: | | | ENa ₂ O +CO ₂ → | Na ₂ CO ₃ | Type: | | | F. $\underline{H}_2 + \underline{N}_2 \rightarrow \underline{N}_H_3$ | | Type: | | | GAl ₂ O ₃ +HCl→ | AlCl ₃ +H ₂ O | Type: | | | HCl ₂ +H ₂ O →H | IC1 +O ₂ | Type: |