
A boolean is an expression that
Evalutes to true or false.

A boolean expression is used in a conditional.

Boolean expression consist of
relational operators

10 == 10 true
5 < 7 true
10 < 2 false
10 != 10 false

What is a Boolean expression?

Relational Operators
In JavaIn Math
==equality=
>greater than>
<less than<
>=greater than or equal to≥
<=less than or equals to≤
!=inequality≠

You’ve used relational operators before. You just have
to learn new syntax. Syntax is the grammar used in a
language. Think of it as the rules you use in Java.

Points to larger numbers
Points to smaller numbers

A relational operator compares two values and determines the relationship
between them

Boolean Logic
Boolean logic is a form of
mathematics in which the only
values used are true and false.

Boolean logic is the basis of all
modern computing.

There are three basic operations in
Boolean logic – AND, OR, and
NOT.

100th Anniversary Edition

Logical Operators
 Java provides logical operators.

Operator Meaning Kind

&& AND Binary two
expressions

|| OR Binary two
expressions

! NOT Unary one

Logic operators are used to evaluate two conditions.

if(x > 10 && y < 20) if(x > 10 || y < 20)

Writing boolean statements with
 && AND

 And operator will be true only if both
expressions evaluate to true.

 if(x < 10 && y > 20) both must be met

 a b outcome

 true true true

 true false false

 false true false

 false false false

Writing boolean statements with
 && AND
 int x = 2 int y = 90

if(x < 10 && y < 97)

if(x > 10 && y < 97)

 (If one were false the whole thing would be false.)
False True

Condition would produce True

Condition would produce False

Short circuit evaluation.

T T

Note: Java uses short-circuit (lazy) evaluation. That means in an or evaluation if
the first part is true the evaluation stops and the result is true; likewise with an and
evaluation with false as the first part the evaluation stops and the result is false.

Writing an or || boolean
statement:

 a b outcome
 true true true
 true false true
 false true true
 false false false

The outcome will be true as long as one of the
expressions evaluates to true.

if(x < 10 || y > 20) Only one must be true

Boolean Operators
 int x = 2 int y = 90

Writing an or || boolean statement:

 (x < 10 || y < 97)

 (x > 10 || y < 97)

True

False

True

True

Condition would produce True

Condition would produce True

Boolean Operators Not !
 It reverses the value

of a boolean
expression

a outcome

True False

False True

if(!(x < 10 || y >20))

Boolean Operators Not !
int x = 2 int y = 90

Writing an && with ! boolean statement:

!(x < 10) && (y < 97)

!(x<10 && y < 97)
 !(true && true)
 !true = false

!True True
Condition would produce False

! true = false && True = False

Writing Boolean Statements
Rewrite each condition below in valid Java syntax (give a

boolean expression):

1. x > y > z

2. x and y are both less than 0

3. neither x nor y is less than 0

(x>y && x > z);

(x<0 && y<0);

(!(x<0) && (!(y<0));

!(x<0 && y<0);

if Statements

Selection statements (also known as decision
statements or a conditional in programming.

if statements as one kind of selection statement.
Basic if statement

if (number == 3)
{
 System.out.println("The value of number is 3");
 System.out.println("Goodbye");
}

if (boolean expression placed here)
{
 do something 1;
 do something 2;
}

The if statement

int x = 109;

if(x<100)
{
 System.out.println("x < 100");
}

if(x>100)
{
 System.out.println("x > 100");
}

OUTPUT
x > 100

Several if statements

if Statements

Improper structure of if

if(grade < 70)
 System.out.println(“You failed”);

if(grade < 80)
 System.out.println(“You passed”);

grade = 50;

Both if statements will execute.

When you use if statements, every
if that is true will execute.

int satScore = 1800;

if(satScore >= 1700)
{
 System.out.println(“College Bound!");
}

if(satScore<1700)
{
 System.out.println(“Try Again!");
}

The if statement

OUTPUT
College Bound!

int satScore = 1800;

if(satScore >= 1700)
{
 System.out.println(“College Bound!");
}

if(satScore<1500)
{
 System.out.println(“Try Again!");
}

The if statement

OUTPUT
College Bound!

Conditional Statements

Programming style

Note that if there is only a single statement in the if or else block,
curly brackets are not needed. If there is more than one
statement in one of these blocks, the curly brackets are required.

if (boolean condition)

 statement;

else

 statement;

if (boolean condition) {

 statement;

 statement;

}

else {

 statement;

 statement;

}
Curly brackets optional

Curly brackets required

Conditional Statements

Improper structure. Will execute every one that is true

public void grade(int testScore) {
 if (testScore >= 90)
 System.out.println("Your grade is A");
 if (testScore >= 80)
 System.out.println("Your grade is B");
 if (testScore >= 70)
 System.out.println("Your grade is C");
 else
 System.out.println("Your grade is F");
 }

testScore = 90;

Print:

Your grade is A
Your grade is B
Your grade is C

 //properly structured with boolean logic operators
 public void grade2(int testScore) {
 if (testScore >= 90)
 System.out.println("Your grade is A");

 if (testScore >= 80 && testScore < 90)
 System.out.println("Your grade is B");

 if (testScore >= 70 && testScore < 80)
 System.out.println("Your grade is C");

 if(testScore < 70)
 System.out.println("Your grade is F");

 }

Boolean logic operators

 //properly structured with if else if
 public void grade3(int testScore) {
 if (testScore >= 90)
 System.out.println("Your grade is A");

 else if (testScore >= 80)
 System.out.println("Your grade is B");

 else if (testScore >= 70)
 System.out.println("Your grade is C");
 else

 System.out.println("Your grade is F");

 }

//improper structure Needs curly braces around ifs

 public void grade4(int testScore) {

 if (testScore >= 90)
 System.out.println("Your grade is A");
 System.out.println("First if statement");
 if (testScore >= 80 && testScore < 90)
 System.out.println("Your grade is B");
 System.out.println("Second if statement");
 if (testScore >= 70 && testScore < 80)
 System.out.println("Your grade is C");
 System.out.println("Third if statement");
 if(testScore <70)
 System.out.println("Your grade is F");
 System.out.println("Last if statement");
 }

Only the first statement
goes with the if. Control
goes to the next statement.

testScore = 70

First if statement
Second if statement
Your grade is C
Third if statement
Last if statement

Put curly braces after the if and at the end of the block that
goes with the if.

public void grade5(int testScore) {
 if (testScore >= 90){
 System.out.println("Your grade is A");
 System.out.println("First if statement");}
 if (testScore >= 80 && testScore < 90){
 System.out.println("Your grade is B");
 System.out.println("Second if statement");}
 if (testScore >= 70 && testScore < 80){
 System.out.println("Your grade is C");
 System.out.println("Third if statement");}
 if(testScore < 70){
 System.out.println("Your grade is F");
 System.out.println("Last if statement"); }
 }

public void whatPrints2(int a, int b)
 {
if(a<10)
 System.out.println("Happy");
if(b>10)
 System.out.println("Boo!");
else
 System.out.println("Halloween");
 }

a = 5 b = 11 Happy Boo
a = 5 b = 5 Happy Halloween
a = 12 b = 11 Boo

public void whatPrints(int e, int f)
 {
if(e>90)
 if(f>10)
 System.out.println("go");
 else
 System.out.println("run");
else
 System.out.println("fly");
 System.out.println("nogo");
 }

Nested if statements and Control

e = 95 f = 12

e = 95 f = 5

e = 85 f = 15

go nogo

run nogo

fly nogo

common errors
If(total >= 25);
{
}

if(total >= 25)
{
}

Cannot put a semicolon after the if statement

Basic structure of an if statement

Avoid Common Errors!
1. if should be lowercase!
 If(num == 3) Wrong!
2. Do not type a semicolon after the boolean

expression.
 if(num == 3); Wrong!
3. Always use the "double equals" symbol == (i.e.

comparison operator) rather than the assignment
operator in control expressions.

 if(num = 3) Wrong!

4. Never put a ; before an open { brace
 ;{ //illegal
 }; //legal

public String theEnd(String str, boolean front) {

Coding Bat theEnd

Given a string, return a string length 1 from its front if FRONT is true. if
it is false return a string length 1 from the back. The string will be non-
empty.

theEnd("Hello", true) → "H"
theEnd("Hello", false) → "o"
theEnd("oh", true) → "o"

Steps to solve

1.First char if front is true
2.Last char if front is false

Coding Bat endsLy
Given a string, return true if it ends in "ly".

endsLy("oddly") → true
endsLy("y") → false
endsLy("oddy") → false

public boolean endsLy(String str) {

Steps:

1.if the chars at the last
two index locations are ly
return true.
2.Method in String called
.equals(string)

Coding Bat twoChar
Given a string and an index, return a string length 2 starting at the
given index. If the index is too big or too small to define a string length 2,
use the first 2 chars. The string length will be at least 2.

twoChar("java", 0) → "ja"
twoChar("java", 2) → "va"
twoChar("java", 3) → "ja“
twoChar("Hello", -7) → "He"
twoChar("Hello", 99) → "He

public String twoChar(String str, int index) {

What would make it return the first two chars.
•If index is too big or small for length of 2
• index < 0
• str.length()-index < 2

Return string of 2 at index
str.substring(index, index +2);

hasBad
 Given a string, return true if "bad" appears starting at index 0 or 1 in the

string, such as with "badxxx" or "xbadxx" but not "xxbadxx". The string may
be any length, including 0. Note: use .equals() to compare 2 strings.

hasBad("badxx") → true
hasBad("xbadxx") → true
hasBad("xxbadxx") → false

public boolean hasBad(String str) {

Conditions for returning true
-bad is at index 0
-bad is at index 1

-str.indexOf(“bad”) == 0;
-str.indexOf(“bad) == 1;

