Honors Chapter 8.1 – 8.3 Practice Worksheet

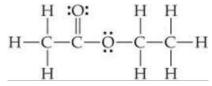
Make a chart with the columns I have listed below. You may want to turn your paper sideways. Draw the correct 3-D Lewis dot structure for each molecule and use <u>resonance</u> when necessary. I included an example below.

Molecule	3-D	Molecular	Electron	Hybridization	Bond	# σ	# π
	Structure	Shape	Domain		Angles	bonds	bonds
			Shape				
NH ₃	HW, N	trigonal pyramidal	tetrahedral	sp³	~109.5°	3	0

- 1. C₂H₆ (don't do 3-D, shapes, or hybridization)
- 2. SO₃
- 3. PCl₅
- 4. ICl₄-
- 5. SF₄

- 6. CN-
- 7. C₆H₆ (don't do 3-D, shapes, or hybridization)
- 8. SiO₂
- 9. XeF₄
- 10. NCl₃
- 11. In the Lewis structure shown below, A, D, E, Q, X, and Z represent elements in the first two rows of the periodic table. Identify all six elements so that the formal charges on all atoms are zero.

- 12. The following are three possible resonance structures for ClO₂. Use formal charges to select the resonance structure(s) that is/are preferred.
- 13. Using bond enthalpies from Table 8.4, estimate ΔH for the following reaction:


$$2CH_4 + O_2 \rightarrow 2CH_3OH$$

14. The molecule shown here is difluoromethane (CH₂F₂), which is used as a refrigerant called R-32.

- a. Based on the structure, how many electron domains surround the C atom in this molecule?
- b. Would the molecule have a nonzero dipole moment?
- c. If the molecule is polar, in what direction will the overall dipole moment point in the molecule?
- 15. Consider the hydrocarbon drawn below.

- a. What is the hybridization at each carbon atom in the molecule?
- b. How many σ bonds are there in the molecule?
- c. How many π bonds?
- 16. Ethyl acetate, C₄H₈O₂, is a fragrant substance used both as a solvent and as an aroma enhancer. This Lewis structure is below.

- a. What is the hybridization at each of the carbon atoms of the molecule?
- b. What is the total number of valence electrons in ethyl acetate?
- c. How many of the valence electrons are used to make σ bonds in the molecule?
- d. How many valence electrons are used to make π bonds?
- e. How many valence electrons remain in nonbonding pairs in the molecule?
- 17. Is the π bonding in NO₂-localized or delocalized? How do you know?

18. Fill in the following chart. If the molecule column is blank, find an example that fulfills the conditions of the rest of the row.

Molecule	Electron-Domain Geometry	Hybridization of Central Atom	Dipole Moment? Yes or No
CO ₂			
		sp ³	Yes
		sp^3	No
	Trigonal planar		No
SF ₄			

- 19. In which one of the following processes are covalent bonds broken?
 - a. $C_{10}H_{8(s)} \rightarrow C_{10}H_{8(g)}$
 - b. $C_{(diamond)} \rightarrow C_{(graphite)}$
 - c. $NaCl_{(s)} \rightarrow NaCl_{(molten)}$
 - d. $NH_4NO_{3(s)} \rightarrow NH_{4^+(aq)} + NO_{3^-(aq)}$
- 20. Which one of the following molecules has a trigonal pyramidal geometry.
 - a. CO_2
 - b. H₂O
 - $c. \ CH_{4}$
 - $d. C_2H_4$
 - e. PH₃