

DNA (Deoxyribonucleic acid)

Chemical inside cell that contains <u>hereditary</u> information

<u>Controls</u> how an organism will look § behave Shaped like a <u>twisted</u> ladder Rungs hold <u>genetic</u> information that is a pair of bases

Reproduction is the process of producing a <u>new</u> organism. The purpose is to transfer <u>DNA</u>

Sexual Reproduction

New organisms is produced from the <u>combined</u> DNA of <u>TWO</u> different cells called sex cells. Male is called <u>sperm</u> & Female is called <u>egg</u>

Fertilization occurs when an egg and sperm unite to form a new organism with half of each parent's DNA

Plants sexually reproduce from male and female parts of a flower

Sex cells are formed by the process of <u>Meíosís</u>

Meiosis Meiosis

During meiosis, the chromosome pairs <u>separate</u> and are distributed to 4 different cells. The resulting sex cells have only <u>half</u> as many chromosomes as the other cells in the organism.

Heredity

The passing of traits from parent to offspring Traits: physical characteristics of an organísm Example: eye color, hair color, g height

Passing Traits to Offspring

Sex cells have <u>23</u> chromosomes and the two sex cells combine to form a zygote with <u>46</u> chromosomes

During <u>fertilization</u> the offspring receives <u>half</u> of its genetic information from its mother and the other <u>half</u> from its father.

Genetics

The study of how traits are passed from parent to offspring by looking at genes Genes are small sections of DNA on a chromosomes that has information about a trait Each chromosome has a gene for the same trait (eye color from mom & eye color from dad) Traits are determined by <u>alleles</u> on the chromosomes Each gene of a gene pair is called an allele Inherited traits are determined by the alleles on the chromosome

The DNA Code

Chromosomes are made of <u>DNA</u>. Each chromosome contains <u>thousands</u> of genes. The sequence of bases in a gene forms a <u>code</u> that tells the cell what protein to produce.

Genes on a Chromosov

Chromosomes are made up of many <u>genes</u> joined together like beads on a string. The chromosomes in a <u>pair</u> may have <u>different</u> alleles for some genes and the <u>same</u> allele for others.

Chromosome pair

Genome

Scientist map a genome to identify all the organisms genes & figure out where they are located

A genome is the complete sequence of an

organísms DNA

The Sex Chromosomes

The <u>sex</u> chromosomes carry genes that determine whether a person is male or female. also carry <u>genes</u> that determine other traits. XX = femaleXY = male

Inheritance of Blood Type Blood type is determined by a single gene with three alleles.

Alleles of Blood Types				
Blood Type	Combination of Alleles			
А	I ^A I ^A or I ^A i			
В	I ^B I ^B or I ^B i			
AB	I ^A I ^B			
Ο	ii			

Group Time

Put the following terms in the correct circle to show the hierarchical structures of DNA

DNA
Gene
1 Allele from each parent
46 Chromosomes
Nucleus

Types of Alleles

Genetics of Pea Plants									
Traits	Seed Shape	Seed Color	Seed Coat Color	Pod Shape	Pod Color	Flower Position	Stem Height		
Controlled by Dominant Allele	Round	Yellow	Grav	Smooth	Green	Side	Tall		
Controlled by Recessive Allele	Wrinkled	Green	White	Pinched	Yellow	End	Short		

Examining & Studying Traits

Two ways scientist study traits <u>Phenotype</u>: <u>Phy</u>sical Appearance outside expression of a gene Blue Eyes <u>Genotype</u>: Gene Combination the two alleles a person has inherited that can only be seen on the DNA BB, Bb, or bb Two categories of genotypes <u>Homozygous</u>: inherited two identical alleles BB (pure dominant) or bb (pure recessive) <u>Heterozygous</u>: inherited two different alleles Bb (hybrid)

Punnett Squares

- Shows all possible <u>combinations</u> of alleles that children can inherit from parents
- Mom's genotype for brown eyesD
 (<u>Bb</u>) a
- Dad's genotype for brown eyes d (<u>Bb</u>)
- Offspring's <u>Phenotype</u>
 - 75% brown, 25% <u>blue</u>
- Offspring's <u>Genotype</u>
 - 25% <u>BB</u>, 50% Bb, 25% bb

Punnett Square Practice

What is the genotype and the phenotype for each parent? What are the possible genotypes and the phenotypes for the offspring?

Codominance

In codominance, the alleles are neither dominant nor recessive. As a result, <u>both</u> alleles are <u>expressed</u> in the offspring. $F^w F^B = black \& white$ $F^B F^B = black$ $F^w F^W = white$

Incomplete Dominance In incomplete dominance, one allele is not completely dominant over the other allele . As a result, <u>both</u> alleles have a <u>blended</u> expression.

RR = red WW = white RW = pink

Pedigree Practice

What does this symbol stand for? Male or female What does the shading of this symbol represent?

A Hemophilia Pedigree

The chart below follows hemophilia in a family. Hemophilia is a genetic disorder that does not allow the blood to clot normally. How many males have hemophilia?

Biotechnology

Biotechnology is the manipulation of living things to make useful products causes changes in an organism Examples of genetic biotechnology Selective Breeding Genetic Engineering Gene Therapy

Selective Breeding

Selective Breeding is an intentional mating of organisms to produce offspring with specific traits Two types: Pure bred Hybrid

Pure breeding

Crossing two individuals that have identical or similar sets of alleles. Example: breeding only fast horses, breeding only labs

Con – decreases genetic variety therefore makes it harder to adapt, resist diseases, and higher chance of genetic disorders