
GridWorld

What is GridWorld?

Critter

Critter differs from Actor in that a critter eats specific types
of other actors adjacent to it.

Critter randomly picks one of its valid adjacent empty
locations and moves to that location.

The result is that Critter moves around the grid and eats
specific Actors.

Default Critter
Behavior

ActorWorld world = new ActorWorld();
Critter thing = new Critter();
world.add(new Location(1,1), thing);
world.show();

Critter

ActorWorld world = new ActorWorld();
Critter thing = new Critter();
thing.setColor(Color.GREEN);
thing.setDirection(180);
Location loc = new Location(2,2);
world.add(loc, thing);
world.show();

Critter

Critter
 extends Actor

frequently used methods from Actor
Method name How is it used?

getColor() gets the critter's color

getDirection() gets the critter's direction

getLocation() gets the critter's location

setColor(col) sets the critter's color to col

setDirection(dir) sets the critter's direction to dir

import info.gridworld.actor.Critter;

Different types of critters may select move locations in
different ways, may have different ways of processing the
actors, and may vary the actions they take when they make
the move.

Examples:
• One type of critter might get all its neighboring actors and

perform some action on each one of them (change color,
change direction, make them move, etc.)

• Another critter may only select actors in front of it to
process

Critter Behavior

public void act()
{
if (getGrid() == null)
return;
ArrayList<Actor> actors = getActors();
processActors(actors);
ArrayList<Location> moveLocs = getMoveLocations();
Location loc = selectMoveLocation(moveLocs);
makeMove(loc);
}

act()

Critter
 extends Actor

frequently used methods – Critter specific
Method name How is it used?

act() calls the methods listed below

getActors() returns an ArrayList of all actors
around this location

processActors(actors) does something to selected actors

getMoveLocations() returns an ArrayList of possible
move locations

selectMoveLocation(locs) picks location to move to

makeMove(loc) moves this critter to location loc or
removes itself from grid if loc is null

if no grid present – stop

• call getActors to get an array list of actors to process
• call processActors to process the array list of actors

received from getActors

• call getMoveLocations to get an array list of locations
where the critter might move

• call selectMoveLocation to select new location from
the array list of possible locations

• call makeMove to move to selected location

act

• Compile and run CritterRunner.java.

After
one
step

Critter

Extending
Critter

The getActors method returns an ArrayList containing all of
the actors around this critter using the 4 cardinal (N,S,E,W)
and 4 intercardinal directions (NE, NW, SE, SW).

In order to change which actors are returned by getActors,
override this method and provide a different approach of
selecting actors.

getActors must not modify any actors; that is the job of
processActors

getActors

public ArrayList<Actor> getActors()
{
 return getGrid().getNeighbors(getLocation());
}

Gets all neighbors adjacent to it

getActors

What has to change if you want a
critter to only get actors in front
and behind?

Make sure you satisfy the post
conditions of each method you
override!!

Extending Critter
Use the GW
quick reference!

public class GetInFrontBehindCritter extends Critter
{
 //constructor

 public ArrayList<Actor> getActors()
 {
ArrayList<Actor> actors = new ArrayList<Actor>();
Grid<Actor> grid = getGrid();
Location inFront = getLocation().getAdjacentLocation(getDirection());
Location behind = getLocation().getAdjacentLocation(getDirection() +
 180);
if(grid.isValid(inFront) && grid.get(inFront) != null)
 actors.add(grid.get(inFront));
if(grid.isValid(behind) && grid.get(behind) != null)
 actors.add(grid.get(behind));
return actors;
 }
}

Extending Critter

What code is needed?

The processActors method will do something to some or all
of the actors around this critter.

The processActors receives a list of all actors around this
actor based on this actor’s getActors method.

The critter act method calls getActors and passes the
returned ArrayList to processActors.

processActors must only change the actors received in the
ArrayList parameter.

processActors

public void processActors(ArrayList<Actor> actors)
{
 for (Actor a : actors)
 {
 if(!(a instanceof Rock) && !(a instanceof Critter))
 a.removeSelfFromGrid();
 }
}

Removes all neighbors adjacent to it

processActors

What has to change if
you want a critter to
only eat flowers?

Extending Critter
Use the GW
quick
reference!

public class FlowerEatingCritter extends Critter
{
 //constructor

 public void processActors(ArrayList<Actor> actors)
 {
for(Actor a : actors)
{
 if(a instanceof Flower)
 a.removeSelfFromGrid();
}
 }

}

Extending Critter

What code is needed?

The getMoveLocations method returns a list of all empty
adjacent locations to which this critter could move.

In order to change which locations are returned by
getMoveLocations, override the method and provide a
different method of selecting move locations.

getMoveLocations must not modify any actors.

getMoveLocations

public ArrayList<Location> getMoveLocations()
{
 return getGrid().getEmptyAdjacentLocations(getLocation());
}

Gets all possible locations where the critter could move

getMoveLocations

The selectMoveLocation method selects a possible move
location from the list of locations returned by
getMoveLocations.

The selectMoveLocation receives a list of all actors around
this actor based on this actor’s getMoveLocations method.

The critter act method calls getMoveLocations and passes
the returned ArrayList to selectMoveLocation.

selectMoveLocation must not modify any actors.

selectMoveLocation

public Location selectMoveLocation(ArrayList<Location> locs)
{
 int n = locs.size();
 if (n==0)
 return getLocation();
 int r = (int) (Math.random() * n);
 return locs.get(r);
}

Selects the one location where the critter will move

selectMoveLocation

The makeMove method receives a location
parameter.

If the parameter is null, the critter is removed from the grid.

If the parameter is not null, the critter moves to the new
location. If an actor was in the location the critter is moving
to, the actor is removed.

makeMove must only modify the actors at this critter’s new
and old locations.

makeMove

public void makeMove(Location loc)
{
 if (loc == null)
 removeSelfFromGrid();
 else
 moveTo(loc);
}

Moves the critter to the selected location

makeMove

Extending the Critter Class

• ChameleonCritter p. C-6
– Overrides processActors to

pick a random actor and
change its current color to the
actor’s color

– Overrides makeMove to also
turn toward the new location

• CrabCritter
– Overrides getActors to get

actors straight ahead, diagonal
left, and diagonal right (from
front)

– Overrides getMoveLocations
to only move to the left or right

– Overrides makeMove so that if
it doesn’t move it randomly
turns left or right

Not Tested

Tested

Overview of GridWorld
Creatures

• Actors
– Bugs

• extending Bug: override Act
– Rocks
– Flowers
– Critters

• DO NOT OVERRIDE ACT!!!
• extending Critter normally means that you are

overriding one or more of the 5 methods

Summary of what is tested

API

• Actor
• Flower
• Rock
• Grid
• Location

API stands for “Application Programming Interface”. In Java, an API is the definition of
how a programmer can access the functionality contained within a code library.

Summary of what is tested

Implementation

• Bug
• BoxBug
• Critter
• ChameleonCritter

An Implementation is a class that implements or extends the given API in order to
perform a specific function.

Exercises
1. Create a class named EnhancedChameleon that extends

ChameleonCritter. If there are no actors around this
critter to process, its color should darken (like a flower).
Hint: get the color of the critter and use some of the Color
methods to darken each of its RGB values by subtracting .05
from each of them.

2. Create a class named ChameleonKid that extends
ChameleonCritter as modified in exercise 1. A
ChameleonKid changes its color to the color of one of the
actors immediately in front or behind. If there is no actor in
either of these locations, then the ChameleonKid darkens
like the modified EnhancedChameleon.

Exercises
3. Create a class called RockHound that extends Critter. A

RockHound gets the actors to be processed in the same way as
a Critter. It removes any rocks in that list from the grid. A
RockHound moves like a Critter.

4. Create a class called BlusterCritter that extends
Critter. A BlusterCritter looks at all of the
neighbors within two steps of its current location. (For a
BlusterCritter not near an edge, this includes 24
locations). It counts the number of critters in those locations. If
there are fewer than c critters, the BlusterCritter’s
color gets brighter (color values increase). If there are c or
more critters, the BlusterCritter’s color darkens (color
values decrease). Here c is a value that indicates the courage of
the critter. It should be set in the constructor.

Exercises

5. Create a class QuickCrab that extends CrabCritter. A
QuickCrab processes actors the same way a
CrabCritter does. A QuickCrab moves to one of the
two locations, randomly selected, that are two spaces to its
right or left, if that location and the intervening location are
both empty. Otherwise a QuickCrab moves like a
CrabCritter.

6.Create a class KingCrab that extends CrabCritter. A
KingCrab gets the actors to be processed in the same way a
CrabCritter does. A KingCrab causes each actor that it
processes to move one location further away from the
KingCrab. If the actor cannot move away, the KingCrab
removes it from the grid. When the KingCrab has
completed processing the actors, it moves like a
CrabCritter.

Group Activity

• Specify
– Create a new creature that extends Critter

• Design
– What variables are needed? What algorithms are

needed?
• Code

– Implement the code
• Test

– Write test cases for the creature specified

