Grade 4 Unit 1 Cool-Down Guidance

Lesson	Response to Student Thinking	Support
1	Students create rectangles but do not	After the warm-up, ask students to work with a partner to discuss
	relate them to multiplication.	and add to their responses to this cool-down.
2	Students do not list all of the factor pairs	During the launch of the first activity in the next lesson, remind
	for a given number.	students about available math tools that can help them reason
		about the side lengths and area of rectangles.
3	The student confuses vocabulary from	When explaining how to play Find the Number game in the next
	the previous lessons: prime, composite,	lesson, connect key vocabulary with drawings of rectangles.
	factor pairs, multiples.	
4	Student shares reflections.	Before the warm-up, consider sharing reflections from the previous
		day and inviting students to keep these ideas in mind in their work
		today.
5	Students do not recognize either 6 and 8	After the warm-up, ask students to work with a partner to discuss
	as factors of 72.	their responses to this cool-down and relate it to skip counting.
6	Students share reflections (about	Before the warm-up, consider sharing reflections from the previous
	organizing and adjusting their thinking)	day and inviting students to keep these ideas in mind in their work
	that may benefit the math community.	today.
7	Students confuse the terms "factor" and	Launch warm-up or activities by highlighting important vocabulary
	"multiple."	from previous lessons.

Grade 4 Unit 2 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students describe what the second tape diagram shows but not how it could be used to show sixths.	At the start of the next lesson, invite students to share how they would show sixths on a blank diagram and
9	Students do not attend to the size of 1 whole in	Add this cool-down to Activity 1 to review how to
4	representing the fractions, or do not recognize ⁹ as	represent fractions greater than 1
	areator than 1	
3	Students who used tang diagrams to reason about ⁴	Before the warm-up, display and discuss tape
U	Students who used tape diagrams to reason about $\frac{1}{10}$	diagrams for $\frac{4}{2}$ and $\frac{4}{2}$ Ask students to notice and
	and $\frac{1}{5}$ may reason correctly about each fraction but	wonder Explain that to compare two fractions, the 1
	draw different lengths to represent 1 whole (for instance, a longer tape to show tenths and a much	whole must be the same size.
	shorter one for fifths), leading to the wrong conclusion about which one is greater.	
4	Students place the labels between the tick marks on	Consider explaining that, on a fraction strip or a tape
	the number line, rather than at or below the tick	diagram, a label like $\frac{1}{2}$ is not placed at the partition
	marks.	line because the number refers to a portion of the
-	r.	tape, rather than to the distance from 0.
5	Students label $\frac{3}{6}$ but do not explain or show the	Before the warm-up, ask students to work with a
	equivalence of $\frac{5}{6}$ and $\frac{10}{12}$.	down Encourage them to use both fraction strips and
	0 12	a number line to support their reasoning.
6	Students respond that $\frac{6}{2}$ is less than $\frac{1}{2}$ or $\frac{11}{2}$ is more	In a small group, give students access to pre-made
	than 1 whole	fraction strips. Ask them to list fractions that have the
		same size as $\frac{1}{2}$ and to notice patterns in the numbers
		in those fractions.
7	Students provide equivalent fractions but do not	After the warm-up, have students revise their cool-
	explain or show reasoning.	down and discuss with a partner.
8	When reasoning about the second problem, students	Before the warm-up, ask students to discuss with a
	notted or between 0 and 1	partner now to laber a number line to show fractions
		greater than 1, such as $\frac{1}{5}$ or $\frac{1}{10}$.
9	Students do not explain or show why the fractions are	Encourage students to use visual representations to
	equivalent or not.	justify the equivalence of fractions they generate and
10	Students multiplied the numerator by a number	focus on the use of multiples.
10	and the denominator by a different number thinking	iustify the equivalence of fractions they generate
	that as long as both are being multiplied by a number.	
	an equivalent fraction could be generated.	
11	Students multiply or divide the numerator and the	Present this approach as a warm up for the next
	denominator by two different numbers resulting in	lesson. Ask students to analyze the approach and
10	fractions that are not equivalent.	discuss student reasoning.
12	When responding to the last problem, students may	Before the warm-up, ask students to think about $\frac{6}{7}$
	say that $\frac{1}{10}$ and $\frac{1}{12}$ were the same size because they	these questions with a partner: "Are $\frac{1}{10}$ and $\frac{1}{12}$ greater
	are both 1 unit fraction greater than $\frac{1}{2} \left(\frac{0}{10} \text{ is } \frac{1}{10} \text{ away} \right)$	or less than $\frac{1}{2}$? Are they the same distance from $\frac{1}{2}$?
	from $\frac{5}{10}$, and $\frac{7}{12}$ is $\frac{1}{12}$ away from $\frac{6}{12}$).	How do you know?"
13	Students tried to write equivalent fractions by	Before the warm-up, display $\frac{15}{8}$ and $\frac{7}{4}$. Discuss with
	dividing both numbers in each fraction, but the	students why it would be helpful to rewrite $\frac{7}{2}$ with a
	numerator doesn't divide equally (or has a remainder)	denominator 8 to compare these fractions.
14	Students conclude that Kiran ran the furthest because	Launch Activity 1 with a discussion about what each
	both the numerator and denominator are larger.	fraction would look like on a number line and using
		this representation to compare fractions.

15	Students attempted to compare $\frac{99}{100}$ and $\frac{9}{10}$ by writing equivalent fractions with 1,000 as the common denominator but didn't manage to complete the multiplication of multi-digit numbers (as the skill is not yet an expectation at this point in their study).	Before the warm-up, display $\frac{99}{100}$ and $\frac{9}{10}$ and ask: "What strategies can we use to compare these two fractions? Let's find as many ways as possible."
16	Students put the fractions in an order other Than $\frac{4}{10}$, $\frac{5}{12}$, $\frac{8}{6}$, $\frac{7}{5}$.	Before the warm-up, display number lines with the given fractions and ask students to justify comparisons.

Grade 4 Unit 3 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students do not relate the equal-group situation to a	During the warm-up, review the representation used
	multiplication expression.	to solve the problem. Consider asking students to
		identify parts of the problem in the representation.
2	Students write the number of shaded parts in each	Before the warm-up, display the diagram and ask
	diagram rather than the value (for example, they	students to name the value each shaded part
	write 6×1 instead of $6 \times \frac{1}{12}$.	represents. Discuss how knowing that value might
	12	help us write a multiplication expression to represent
		the value of all the shaded parts.
3	Students may account for only the numerator	Before the warm-up, pass back the cool-down and
	when writing an expression for a given fraction.	work in small groups to make corrections, being sure
	For instance, they may reason that there are 2 groups	to use diagrams to support reasoning.
	of $\frac{1}{9}$ but write $\frac{3}{9} = 2 \times 4$ instead of $2 \times \frac{1}{9}$.	
4	Students multiply the whole number by the	Before the warm up, select a student's cool-down
	numerator of the fraction but do not attend to the	from the previous lesson (name anonymous). Ask
	denominator (for instance, expressing the value of	students to identify what the student did well and
	the first expression as 12 instead of $\frac{12}{5}$).	what the student needs to do to improve the cool
_		down.
5	Students generate only one equivalent expression.	During the activity syntheses, connect diagrams to
		expressions or equations.
6	Students determine the total number of liters of	Before the warm-up, pass back the cool-down and
	milk to be something other than $\frac{13}{4}$.	have students discuss strategies they could use to find
7	7	the product.
1	Students find three ways to compose $\frac{1}{4}$ from other	Launch the warm-up of Activity 1 by highlighting
	fractions but do not represent them with expressions.	
8	The numerators in the equations students write for	Launch Activity 1 with a discussion about this cool-
•	the first problem do not add to 13.	down.
9	Students incorrectly represent $2\frac{1}{5}$ on the	Launch Activity 1 with a discussion about this cool-
	number line or do not see it as equivalent to $\frac{11}{5}$.	
10	For the last expression, students rewrite $\frac{11}{c}$ as $1\frac{5}{c}$ and	Before the warm-up, invite students to work in small
	subtract the 1 whole from 4, but leave the fractional	groups to discuss a correct response to this cool-
	part unattended (writing $3\frac{5}{2}$ as a result of the	down.
	$_{6}$ subtraction)	
11	Students do not vet represent a mixed number as the	Launch Activity 1 by reviewing a correct response to
	sum of two or more fractions.	the cool-down.
12	Students find the value of the difference without	Before the first activity, pair students up to discuss
	explaining their first step.	their responses.
13	Students find a difference between the shortest	Before the warm-up, have students work in groups of
	and longest pencils other than $3\frac{7}{2}$ inches.	2 to discuss a correct response to one of the problems
		of this cool-down.
14	Students say that there are five data points that are	Before the warm-up, have students work in groups of
	greater than $1\frac{3}{8}$ because they mistake the third tick	2 to discuss a correct response to this cool-down.
	mark between 1 and 2 to be $1^{\frac{3}{2}}$, while it should be	
	8 ⁷	
	<u>4</u> .	
15	Students correctly recognize the heights of the	Launch Activity 1 with a discussion about this cool-
	two stacks as $\frac{1}{3} + \frac{1}{3} + \frac{1}{6}$ and $\frac{1}{2} + \frac{1}{6} + \frac{1}{6}$, but do not use	down.
	equivalence to find each height. (They may, for	
	instance, add the numerators of each expression, as	
	they had done when adding fractions with the same	
	denominator.)	

16	Students write an equivalent fraction for the tenths but also multiply the numerator of the hundredths by 10, changing the value of the hundredths.	Launch Activity 1 with a discussion about this cool- down.
17	Students add or subtract only the numerators of the fractions when finding sums or differences of tenths and hundredths.	Before the warm-up, invite students to work in small groups to discuss a correct response to this cool- down.
18	Students do not accurately add tenths and hundredths.	Before the warm-up, invite students to work in small groups to discuss a correct response to this cool- down.
19	Students determine the notebook is not tall enough for Han's design.	Before the warm-up or practice problems, review strategies and solutions for the cool-down.

Grade 4 Unit 4 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	For the last problem, students may shade 7 small	Launch Activity 1 with a discussion about this cool-
	squares (instead of 70 small squares) to represent 0.7.	down.
2	Students may say that options B (5.40 = 5.04) and D	Launch the lesson by asking students to recap the
	(0.07 = 0.70) in the first problem are both true	important points of the previous lessons.
	because, in each case, the numbers on the two sides	
	of the equal sign have the same set of digits, just in	
	different places. (Option B has a 5, a 4, and a 0, and	
	option D has two 0s and a 7.)	
3	Students may disregard the decimal points in each	Launch the warm-up or Activity 1 by highlighting
	pair of numbers and compare the numbers as if they	important notation from previous lessons.
	were whole numbers.	
4	Students reason that 5.01 is greater than 5.1 because	Before the warm-up present students with 5.1 and
	5.01 has more digits.	5.01 and the argument that both represent the same
		quantity. Pair students up to discuss this argument
		and offer a statement of agreement or argument
		against this reasoning.
5	Students may compare only the digits in the ones	Before the warm-up, invite students to work in
	place, disregarding the tenths and hundredths, or be	partners to discuss the similarities and differences
	unsure how to compare the tenths and hundredths in	between $3\frac{2}{2}$ and 3.2
	different notations (for instance $3 \frac{2}{3}$ and 3.2)	
0	$\frac{1}{100}$	
D	students represent only parts of the number and	the seel down
7	Students identify the numbers with the digit 2 in	Loungh the lossen by asking students to recen the
1	students identify the numbers with the digit 2 in	Launch the lesson by asking students to recap the
0	Students overses 224,000 as semathing other	Performe the warm up mass heads the seal down and
0	than 200,000 + 20,000 + 4,000 in expanded form or in	work in small groups to make corrections
	representations	work in small groups to make corrections.
0	Students identify the value of the E in each number as	Poforo the warm up, invite students to work in small
5	something other than 500,000 or 50,000	groups to discuss a correct response to this cool
		down
10	Students correctly identify the value of 2 and 7 in each	Refere the warm up, select a student's cool down
10	number but write an addition expression to represent	from the previous lesson (name aponymous). Ask
	the relationship between the digits in the number	students to identify what the student did well and
		what the student needs to do to improve the cool-
		down
11	Students place the number 28 500 between 200 000	Launch the next day's lesson with a discussion of this
11	and 300 000, or suggested that the number line need	cool-down
	to be extended to accommodate 28 500	
12	Students compare the two numbers with different	Add this cool-down to the first activity and ask
14	digits in the two blanks. Or they compare the	students to discuss how they could figure out which
	numbers with the same digit in the blanks but don't	digits would make the second number greater
	compare all the possible digits or don't attend to place	without trying oach digit in both numbers
	value when making comparisons	without if ying each digit in both humbers.
12	Students identify 270 000 as being greater than	Refore the warm-up, have students work in partners
10	279 104 either because they microad the digits or	to discuss the digits that bein them decide which is
	279,104, either because they misread the lights, of	larger and the reasoning behind the mistake that
	and the latter has a 1 and a 4	270 000 is larger
14	and the latter has a 1 and a 4.	2/3/033 is larger. Before the warm-up, invite students to work in
17	thousands place and mistake 627 800 to be between	nartners to discuss strategies for determining the
	670 000 and 680 000 on the number line	order of the numbers in this cool-down
1		

15	Students may identify the nearest multiple of 10,000 for 248,640 as 50,000 instead of 250,000, or the nearest multiple of 1,000 for 248,640 as 9,000 instead of 249,000. They may focus on the digits in the right places to find the nearest 10,000 or 1,000, but neglect the fact that the number is actually in the 200,000s.	Before the warm-up, invite students to use a number line to explain the claim that 248,640 is closest to 9,000. Ask students what makes sense about the claim and what might be missing.
16	Students use the digit in the hundred-thousands place to round to the nearest 100,000, use the digit in the ten-thousands place to round to the nearest 10,000, and so on, neglecting to consider the value of the digits that follow. (For instance, seeing the 5 in 569,003, they round it to 500,000, and seeing the 6, they round it to 560,000.)	Launch the lesson by asking students to recap how we determine the nearest multiple when rounding.
17	Student explains with reasoning about how close the altitude is to the nearest thousand or ten-thousand.	Add this cool-down to review prior to the practice problems. Consider asking students to round altitudes from the list and then to identify the planes that are nearest and furthest from their rounded altitudes and how this could affect problem solving.
18	Students misalign digits when adding or subtracting multi-digit numbers.	During the launch of the first activity in the next lesson, remind students about available grid paper for the lesson.
19	Students subtract the smaller number from the larger number regardless of placement in each number. They do not decompose units when needed, resulting in calculation errors.	Launch Activity 1 with a discussion about organizing digits.
20	Students only decompose one time or lose track of notation when regrouping several times.	Launch Activity 1 by highlighting important notation from previous lessons.
21	Students make errors with decomposing or notation when subtracting from numbers with more than one zero.	Launch Activity 1 by highlighting important notation from previous lessons.
22	Students misalign digits when subtracting multi-digit numbers.	Add this cool-down to review prior to the practice problems. Consider asking students to estimate or round as a strategy.

Grade 4 Unit 5 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students select an image that represents "3 more	After the warm-up, ask students to use cubes to build
	than 2" and not "3 times as many as 2."	two representations: one showing "2 more than" and
	,	one showing "twice as many." Discuss the differences.
2	Students select a statement that says Elena has	Launch Warm-up or Activity 1 by highlighting how
-	more cubes or an equation that shows a relationship	diagrams show times as many and how equations
	other than 5 x 4	represent this comparison
3	Students interpret the situation as "4 times as many	Before the warm-up, invite students to discuss with a
Ů	as 28."	partner how the diagrams for these two situations
		might be the same and different: "quantity A is 4
		times as many as 28" and "4 times as many as
		quantity A is 28 "
4	Students write an equation or draw a diagram that	Before the warm-up invite students to look at the
•	represents a different problem	equation or diagram and discuss how it matches the
		problem and how it might be adjusted to better
		match the problem
5	Students find how much was spont on comics, but do	During the activity syntheses, connect diagrams to
J	not find the total amount spent	ovprossions or equations and ask: "What equation
	not find the total amount spent.	would below us find the solution to this problem?"
C	Students write true statements that relate the values	Performe the presenting problems, invite students to work
0	2, 20, and 200 without using a multiplicative	before the practice problems, invite students to work
	s, so, and soo without using a multiplicative	
	companson.	
7	Students may say that 62 continuators is longer than 1	Lound the locan by asking students to recent the
1	motor bocause 62 is greater than 1	important points of the provious lossons
0	Students may say that Kiran's classmate lives forther	Important points of the previous lessons.
0	from school (or that 800 maters is greater than 7	between kilometers and meters by creating an
	kilometers) if they mistely 7 kilometers to be 700	between knometers and meters by creating an
	meters instead of 7 000 meters, or if they confuse the	of each losson
	relationship botwoon kilometers, of it they confuse the	of each lesson.
	hetween meters and centimeters	
0	Students may not notice that the second question	Before the warm-up, invite students to work in small
5	acks for an amount in millilitors and answer the	groups to discuss a correct response to this cool
	auestion in liters (8 liters)	down
10	Students may misinterpret the question and compare	Before the warm-up, pass back the cool-down and
10	the amount concurred at the end of the game to 1	work in small groups to make corrections
	liter rather than the total amount consumed to 1	work in small groups to make corrections.
	liter	
11	Students may try to find the number of ounces in 2^{1}	Before the warm-up pass back the cool-down and ask
		students to discuss strategies for finding the total
	pounds by multiplying $3\frac{1}{2}$ and 16 but aren't sure how	number of ounces.
	to proceed.	
12	Students may try to express 400 minutes in hours but	Launch Activity 1 with a discussion about strategies
	aren't sure how to do so because 400 is not a multiple	for comparing 400 minutes and 8 hours.
	of 60. They may not answer the comparison question	
	completely because of this.	
13	Students may misinterpret the problem statement to	Before the practice problems, pass back the cool-
	mean that Priya needs 4 times as many raisins as she	down and work in small groups to discuss what the
	does oats.	question was asking and strategies for solving.
14	Students may misinterpret the statement "the art	Launch Activity 1 with a discussion about this
	teacher buys 6 pounds of clay, which is 4 times as	statement.
	much clay as what the kindergarten teacher buys" to	
	mean that the latter buys 4 times 6 pounds. Or they	
	may interpret the statement correctly but miss that	
	the question is asking for a quantity in ounces.	

15	Students may get stuck when finding a number that gives 5 feet when multiplied by 4 or may not recall that 1 foot is 12 inches.	Before the warm-up, have students work in small groups to discuss how the units in the problem were related.
16	Students may mistake perimeter for area and use factors of 20 as possible side lengths. For example, they may say 5 inches and 4 inches are possible side lengths because 5 x 4 = 20.	Launch the lesson by asking students to recap how two rectangles could have the same area but different side lengths.
17	Students may not notice that the side lengths of the rectangle were given in feet and the perimeter of the trapezoid was given in yards.	Before the practice problems, pass back the cool down and work in small groups to make corrections.

Grade 4 Unit 6 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students start counting the 15th stage from the third	During the warm-up of the next lesson, have students
	one, leading to an incorrect number of triangles and	work with a partner to discuss a correct response to
	squares.	the cool-down.
2	Students may find the 42nd shape by drawing all the	Before the warm-up, display reasoning that mirrors a
	smiley faces up to that point, rather than by using	common misconception. Ask students to make sense
	numerical reasoning.	of the reasoning and note any questions they have
		about it. Discuss possible revisions to the reasoning
		and allow students to review and revise their cool-
		downs.
3	Students say that 50 could represent a side length or	Before the warm-up, invite students to work in small
	the perimeter of a rectangle in the pattern because	groups to discuss a correct response to this cool-
	they incorrectly recall multiples of 3 and 6.	down.
4	Students list every multiple of 8 rather than using a	Before the practice problems, have students work in
	pattern.	small groups and compare their strategies for
		answering the question. Allow them to make
_		revisions.
5	Students find a number of seats other than 218.	After the warm-up, have students discuss with a
		partner their strategies for the cool-down and allow
_		time to make revisions to their thinking.
6	Students use a diagram, but find a value other than	Launch warm-up or activities by highlighting
_	498 as the product.	important representations from previous lessons.
1	Students may find the correct partial products but add	Before the warm-up, invite students to work in small
	them incorrectly.	groups to discuss a correct response to this cool-
•		down.
8	Students may decompose factors in ways to result in	Launch warm-up or activities by analyzing two
	partial products that are not useful.	different ways to decompose the factors to multiply.
0		Discuss which is most useful and why.
9	Students decompose factors and multiply without	After the warm-up, have students discuss with a
	considering place value, resulting in incorrect partial	partner their strategies for the cool-down and allow
10	products.	time to make revisions to their thinking.
10	students multiply the digits without accounting for	Before the warm-up, have students discuss in small
	their place value (for example, treating 4 and 1 as	groups the partial products for this problem and this
	inaccurate partial products	specific error.
11	Students may decompose the multi-digit factors by	Poforo the warm up, invite students to work in small
11	place value and correctly find the partial products by	groups to discuss a correct response to this cool
	make computation errors when adding them	down
19	Students who use an algorithm that uses partial	Before the practice problems, select a student's cool-
14	products may neglect to consider the place value of	down from the previous lesson (name aponymous)
	the digits they are multiplying and end up with some	Ask students to identify what the student did well and
	incorrect partial products	what the student peeds to do to improve the cool-
		down
13	Students show they understand the situation as a	After the warm-up in the next lesson pair students up
10	division problem, but find a quotient other than 16.	to discuss their responses.
14	Students do not write a division equation to represent	Launch the warm-up or Activity 1 by highlighting
	the situation.	important notation from previous lessons.
15	Students show they understand the problem as a	After the warm-up in the next lesson, pair students up
	division or unknown side length problem. but find a	to discuss their responses.
	solution other than 26 square sticky notes.	
16	Reflection	

17	Students decompose the dividend into 100, 30, and 2, divide each part by 4 separately, and do not divide completely when working with 30 and 2. (For example, they see that dividing 30 by 4 gives 7 with a remainder of 2 but do not combine it with the 2 ones.)	Before the warm-up, select a student's cool-down from the previous lesson (name anonymous). Ask students to identify what the student did well and what the student needs to do to improve the cool- down.
18	Students find the correct partial quotients but don't find their sum, or don't connect the sum to the value of $430 \div 5$. Students complete one student's work, but not both.	Launch the warm-up or Activity 1 by highlighting important notation from previous lessons.
19	Students identify partial quotients appropriately but make computation errors when multiplying a number by 4, or when subtracting numbers from the dividend.	Before the warm-up, invite students to work in small groups to discuss a correct response to this cool- down.
20	Students disagree with Mai because of an error in computation or reasoning. (For example, they may think that 200 is a multiple of 6 and therefore 194, which is 6 less than 200, is also a multiple of 6.)	Before the practice problems, invite students to work in small groups to discuss a correct response to this cool-down.
21	Students estimate instead of calculate the number of tickets sold and draw an incorrect conclusion as a result. (For example, they may think that 5 + 4 is 9, which is close to 10, find 10 x 278 instead, and reason that 2,780 is quite a bit more than 2,600.)	Launch Activity 1 with a discussion about whether to estimate or to calculate precisely when solving a problem such as in the cool-down. Invite students to consider the implications of each approach.
22	Students find an area other than 3,456 square inches for the new banner, or a difference other than 1,152 square inches when comparing the area of the banners.	Before the warm-up, invite students to work in small groups to discuss a correct response to this cool- down.
23	Students only answer part of the problem.	Before the warm-up, select a student's cool-down from the previous lesson (name anonymous). Ask students to identify what the student did well and what the student needs to do to improve the cool- down.
24	Students may determine the number of people under 18 as something other than 345,599.	Before the practice problems, review strategies and solutions for the cool-down.

Grade 4 Unit 7 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students describe the image only in terms of real-	Launch warm-up or Activity 1 by highlighting key
	world objects (such as "there are 2 kite-like shapes")	vocabulary from previous lessons.
	or symbols (such as "two lines make a big X and one	
	more line makes a letter A on the right side").	
2	Students recognize that some statements are false,	Launch warm-up or Activity 1 by highlighting key
	but do not correct the statements.	vocabulary from previous lessons.
3	Students say the lines are parallel because they do not	Before the warm-up, have students work in groups to
	cross.	discuss a correct response to this cool-down.
4	Students identify lines that are not parallel as being	Launch warm-up or Activity 1 by highlighting
	parallel.	important ideas from previous lessons.
5	Students say figure B is an angle or identify	Launch warm-up or activities by
	some, but not all of the angles in the letter Y.	highlighting important vocabulary from
		previous lessons.
6	Students may describe one way the angles are the	After the warm-up, ask students to work with a
	same or different but not both. Students may	partner to discuss and add to their responses to this
	compare the angles without describing the rays.	cool-down.
7	Students determine the larger angle but do not use	Before the next day's warm-up, pair students up to
	precise language to describe how much larger.	discuss their responses.
8	Students find angle measurements that are more than	Launch Activity 1 with a discussion about this cool-
	5 degrees greater or less than 90, 45, or 150.	down.
9	Students find a measure other than 17°, 18°, or 65°	Launch the lesson by reviewing the use of a
	degrees.	protractor and how to read it.
10	Students identify Figure A as an example of	Launch warm-up or Activity 1 by highlighting key
	perpendicular lines. Students find angle	vocabulary from previous lessons.
	measurements other than 53° and 117°.	
11	Students draw an angle that is larger or smaller	Before the practice problems. pass back the cool
	than required.	down and work in small groups to make corrections.
12	Students may recognize that "obtuse" and "acute"	Launch warm-up or Activity 1 by highlighting key
	refer to angles that are greater than and less than 90⁰	vocabulary from previous lessons.
	but get the terms reversed.	
13	Students may compose angles in ways that do not	During the activity syntheses, connect diagrams to
	result in the correct answer.	expressions or equations.
14	Students may mistake the angle between two	Before the warm-up, select a student's cool-down
	consecutive numbers to be 5° because that space	from the previous lesson (name anonymous). Ask
	represents 5 minutes of elapsed time.	students to identify what the student did well and
		what the student needs to do to improve the cool-
		down.
15	Students may not find the values of or if they don't	Before the warm-up, have students work in partners
	recall that a full turn around a point makes a 360°	to discuss a correct response to this cool-down.
	angle.	

Grade 4 Unit 8 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students choose attributes other than A and E.	Launch the warm-up by highlighting important ideas from previous lessons.
2	Students identify triangles other than A and E as right triangles. Students say triangle E belongs with triangles A, B, and C, or do not explain why their chosen triangle belongs.	Launch the warm-up or activities by highlighting important representations from previous lessons.
3	Students describe the number of sides and number of angles (or corners), but do not describe the length of sides, size of angles, or pairs of parallel sides.	Launch the warm-up or activities by highlighting important representations from previous lessons.
4	Students draw a line through the smiling face that splits the circle into halves but is not a line of symmetry.	Launch warm-up or Activity 1 by highlighting important ideas from previous lessons.
5	Students agree with Kiran or draw another figure that does not show the whole figure with the given line of symmetry.	Launch the warm-up or activities by highlighting important representations from previous lessons.
6	Students draw figures with more or fewer lines of symmetry than required.	Before the practice problems, have students work in partners to discuss a correct response to this cool- down.
7	Students find a value for the perimeter other than 84 mm.	Launch warm-up or activities by highlighting important representations from previous lessons.
8	Students determine side lengths other than 2 yd And $8\frac{1}{3}$ yd.	Before the warm-up, pass back the cool-down and work in small groups to make corrections.
9	Students provide a perimeter for the given triangle and not the pre-folded shape.	Before the warm-up, have students work in partners to discuss a correct response to this cool-down.
10	Students may omit angle <i>p</i> because it is not contained within the figure.	Before the practice problems, pair students up to discuss their responses.