Grade 3 Unit 1 Cool-Down Guidance

Lesson	Response to Student Thinking	Support
1	Students do not read and interpret the	Use the launch of the next day's activity to have students interpret
	bar graph accurately, or students write	the picture graph and generate questions that could be answered
	questions that can't be answered with	with the picture graph.
	the graph.	
2	Students draw lines into the bars of the	During the launch of the next day's activity, have students discuss
	bar graph to find the number	how the scale on the bar graph can be used to determine the
	represented by the bar by counting.	number of people or objects in each category.
3	Students say 5 sparrows are	Use the next day's warm-up to practice counting by 5, and discuss
	represented in the graph.	how this could be used to read a scaled picture graph.
4	Students draw 4 smiley faces on the	Before the warm-up, invite students to work in small groups to
	graph instead of 2.	discuss a correct response to this cool-down.
5	Students draw bars that use a scale of 1	Use the launch of the next day's activity to discuss the difference
•	instead of a scale of 5.	between a bar graph that has a scale of 1 and a scaled bar graph.
6	Reflection	
7	Students show they understand which	Use the launch of the next day's activity to brainstorm tips for
	categories to compare, but they use	reading a scaled graph.
	numbers that are not based on the scale	
0	of the graph.	
8	Students find sums rather than the	Before the practice problems, pass back the cool down and work in
	differences.	small groups to make corrections.
	In the two-step compare problem,	
	students only find the difference	
	between evening and morning (or	
9	evening and lunchtime). Students indicate that they mixed up	Use the next day's warm-up to discuss how to represent a situation
J	the number of groups and the number	involving equal groups, differentiating between the number of
	of objects in each group by making 5	groups and the number of objects in each group.
	groups of 3.	
10	Students answer no and explain that the	During the launch of the next day's activity, have students discuss a
10	diagram should have 10 parts with 4 in	matching situation and diagram, such as cards E and J.
	each part.	
11	Students draw 2 groups of 6.	Use the next day's warm-up to have students practice
		differentiating the groups in the image from the number of dots in
		each group.
12	Students add or subtract the numbers in	During the launch of the next day's activity, have students discuss
	the problem instead of multiplying.	what the situations have in common that make them
		multiplication problems. Ask students to recap the important points
		of the previous lesson.
13	Students choose drawings, diagrams, or	Use the launch of the next day's activity to discuss how problems
	situations that represent addition	that involve multiplication are different than problems that involve
	instead of multiplication.	addition.
14	Students write a number for the	Use the launch of the next day's activity to brainstorm ways to find
	unknown that doesn't make the	the unknown number in a multiplication equation.
	equation true.	
15	Students find solutions other than 40	Before the practice problems, pass back the cool-down and work in
	toys and 5 piles.	small groups to make corrections.
	Students do not clearly show how they	
	found the solution or do not show a	
10	solution.	
16	Students aren't sure how to arrange	Use the next day's warm-up to brainstorm
17	cubes into an array.	tips for arranging objects into an array.
17	Students do not describe how the rows	Use the next day's warm-up to have students discuss how they see
	and columns are connected to equal	equal groups in the array.
	groups.	

18	Students don't write a multiplication expression that matches the array they created.	Use the launch of the next day's activity to have students discuss how to write an expression that represents an array.
19	Students write an equation that doesn't use a symbol for the unknown number.	Before the practice problems have students discuss how they can represent the problem with an equation before they know the solution, and how they can represent the problem with an equation once they know the solution.

Grade 3 Unit 2 Cool-Down Guidance

ts discuss which figure has the
s lesson, have students discuss
per of square tiles tells us the area
ass back the cool-down and work
าร.
ve students practice skip-counting
s in a rectangle.
ctivity to have students discuss
at represents a multiplication
s activity, have students discuss
inches or square centimeters to
k cover) and why.
s activity, have students discuss
uare feet to measure the area
ok.
s lesson, have students
number of square units in a
re visible.
s activity, have students discuss
surements to find the area of
ts work in partners to discuss a
n.
s back the cool-down and work in
s lesson, have students share
а.
s activity, have students discuss
the figure to find its area.
s back the cool-down and work in

Grade 3 Unit 3 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students do not select all the ways that	Before the warm-up, have students discuss different ways that 257
	they can represent two hundred fifty-	can be decomposed using place value.
	seven.	
2	Students do not find the difference in	Before the warm-up, invite students to work in small groups to
	heights.	discuss a correct response to this cool-down.
3	Students make a minor mistake carrying	Before the warm-up, pass back the cool down and work in small
	out their strategy.	groups to make corrections.
4	Students find the sum, but do not use	During the launch of the next day's activity, have students describe
	an addition algorithm.	the steps used in the algorithms.
5	Students find the sum, but do not use	During the launch of the next day's activity, have students recap the
	one of the algorithms they have	important points of the previous lessons.
	learned.	
6	Students found the correct sum but did	Prior to the practice problems, ask students to recap the important
	not explain their choice of strategy or	points of the previous lesson and discuss strategies or algorithm.
	algorithm.	
7	Students make a minor mistake carrying	Before the warm-up, have students work in groups to discuss a
	out their strategy.	correct response to this cool-down.
8	Students do not explain the	During the launch of the next day's activity, have students discuss
	decomposition of a 10 into 10 ones.	how the diagram matches the algorithm, specifically how the
		decomposition of the ten into 10 ones is recorded.
9	Students do not explain the	Use the warm-up of the next day's lesson to have students consider
	decomposition of a hundred into 10	when they would have to decompose a hundred into more tens.
	tens.	
10	Students find the difference, but do not	During the launch of the next day's activity, have students recap the
	use an algorithm from the lesson.	important points of the previous lessons.
11	Students note ways to subtract that	Pair students up before the warm-up to discuss their responses.
	they would like to learn more about.	
12	Students do not explain how they would	Before the practice problems, have students recap
10	subtract.	the important points of previous lesson and discuss the cool-down.
13	Students place 185 on the correct	During the launch of the next day's activity, have students discuss
	number line, but don't place it in the	where they would place 185 on the second number line.
14	correct location.	
14	Students select 100 or 170 as the closest	During the launch on the next day's activity, display 162 on a
	multiple of 100 or 10 to 162.	number line marked with multiples of 10 and 100 and have
10	Students round 227 to 220 or 200 when	students discuss the nearest multiple of 10 and 100.
15	Students round 237 to 230 or 300 when rounding to the nearest ten and	During the launch on the next day's activity, display 237 on a
	hundred.	number line marked with multiples of 10 and 100 and have students discuss the nearest multiple of 10 and 100.
16	Students do not accurately identify 2	Before the practice problems, pass back the cool-down and work in
10	numbers that could be Clare's number.	small groups to make corrections.
17	Students do not explain why Tyler's	Launch the lesson by asking students to recap the important points
11	statement does not make sense.	of the previous lessons.
18	Students select an equation that doesn't	During the launch of the next day's activity, have students discuss
10	represent the situation.	how the second equation matches the situation, specifically what
		the numbers and the letter represent.
19	Students represent the problem with an	During the launch of the next day's activity, have students
10	equation with a symbol for the	brainstorm letters that could be used to replace the symbol based
	unknown instead of a letter.	on what the letter represents.

Grade 3 Unit 4 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students represent 6 bags of apples	During the launch of the next day's activity, pass back the cool-
	instead of 6 apples in each bag.	down and have students work in pairs to represent the problem
		with counters and discuss the solution to the problem.
2	Students represent 6 apples in each bag	During the launch of the next day's activity pass back the cool-down
	instead of 6 bags with the same number	and have students work in partners to represent the problem
	of apples in each.	with counters and discuss the solution to the problem.
3	Students choose drawing A, which	During the launch of the next day's activity, have students discuss
	shows 8 bags instead of 8 markers in	why drawing B matches the situation.
	each bag.	
4	Students select responses that	During the launch of the next day's activity, have students work in
	correspond to 7 groups of 2 instead of 2	partners to discuss a correct response to this cool-down.
	groups of 7.	
5	Students write an expression other than	Before the practice problems, have students to work in partners to
	$36 \div 4$ to match the situation or don't	discuss a correct response to this cool-down.
	find a solution to the problem.	
6	Students say that different numbers	During the launch of the next day's activity, pass back the cool-
	should be used to complete each	down and have students discuss how the missing number in both
	equation.	equations relates to the situation.
7	Students write a multiplication equation	During the launch of the next day's activity, have students discuss
	and division equation to represent the	the parts of each equation and how they represent the situation.
	situation, but don't explain their	
	reasoning.	
8	Reflection	
9	Students find the product of 4 and 8 by	Before the next day's warm-up, have students discuss which facts
	drawing a discrete diagram or counting	on the table could be used to find 4 x 8.
	one-by-one.	
10	Students find the total number of	Before the warm-up, pass back the cool-down and have students
	squares in the rectangles, but don't	discuss how they could represent each of the given expressions by
	mark or shade the rectangle to	marking or shading parts of the rectangular area.
	represent one of the given expressions.	
11	Students find the area of the rectangle,	Before the practice problems, highlight a strategy for finding the
	but don't record an expression that	area on the rectangle, and discuss how to write expressions that
	represents their strategy.	would represent the strategy.
12	Students give the correct product of 6 x	During the launch of the next day's activity have students discuss
	40, but don't provide any reasoning	their reasoning about how they know 6 x 40 = 240.
	around how they found the product.	
13	Students don't find a solution to the	Use the next day's warm-up to have students discuss how the
	problem.	diagrams could have been used to represent the problems from this
		lesson.
14	Students don't explain how the diagram	Use the next day's warm-up to have students discuss how the
10	represents the expression.	diagram could have been used to represent the problem.
15	Students use an inefficient method that	Before the warm-up, pass back the cool-down and have students
	results in an error, such as drawing 6	discuss strategies they could use to find the product.
	groups of 15 and miscounting or skip	
	counting by 6 and making a mistake in	
10	the count.	
16	Students find the product 4 x 24 of by	Launch the lesson by asking students to recap the important points
17	adding 24 repeatedly.	of the previous lesson and discuss efficient strategies.
17	Students solve the problem, but don't	Before the practice problems, pass back the cool-down and have
	write an equation with a symbol for the	students discuss how the problem could be represented with an
10	unknown to represent the situation.	equation with a symbol for the unknown number.
18	Students do not find a solution to the	Before the warm-up, pass back the cool-down and have students
	problem.	work in small groups to make corrections.

19	Students do not determine the quotient of $51 \div 3$.	During the launch of the next day's activity, highlight importance that division can be seen as the number of groups or the size in each group.
20	Students do not find the value of	Before the warm-up, invite students to work in small groups to
	96 ÷ 6.	discuss a correct response and strategies to this cool-down.
21	Students don't find a solution to the	Before the practice problems, pass back the cool-down and work in
	problem.	small groups to make corrections and discuss strategies.

Grade 3 Unit 5 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students partition the rectangle into	During the launch of the next day's activity, have students discuss
	equal parts, but not eight equal parts.	the meaning of "sixths" and "eighths."
2	Students label each part in the first	Use the next day's warm-up to discuss what each part in a
	rectangle with "8" or "1".	partitioned rectangle represents.
3	Students answer with the unit fraction	Before the warm-up, pass back the cool down and have students
	that represents each part rather than	discuss how $\frac{5}{6}$ represents the shaded portion of the rectangle.
	the fraction that represents the entire	0
	shaded portion.	
4	Students partition the diagram into 8	Before the practice problems, pass back the cool-down and have
	parts and shade in 6 parts, but the parts	students discuss strategies for partitioning a diagram into 8 equal-
	aren't equal.	sized parts
5	Students have key ideas or lingering	Before the next day's warm-up, pair students up to discuss their
	questions to discuss with other	responses.
0	students.	
6	Students do not accurately partition the	Before the next day's warm-up, have students discuss how to
	interval from 0 to 1 into eight parts to	partition a number line to show eighths.
	locate $\frac{1}{8}$.	
7	Students le cate ³ hut de s't le cate ⁵	During the launch of the next day's activity have students discuss
•	Students locate $\frac{3}{2}$, but don't locate $\frac{5}{3}$.	how they would locate one of the fractions greater than 1 on the
		number line.
8	Students do not use the length of the	During the launch of the next day's activity, have students complete
-	given unit fraction to locate 1.	a choral count by thirds, starting at $\frac{1}{3}$. Have students raise their
		hand, stop the count, and explain their reasoning when they get to
		the fraction that is equivalent to one.
9	Students do not use $\frac{1}{6}$ or partition the	Before the practice problems, pass back the cool down and work in
-		small groups to make corrections.
	interval between 0 and $\frac{7}{6}$ into 7 equal	
	parts to 1.	
10	Students choose two fractions that are	Add this cool-down to Activity 1 to review.
11	close in size, but not equivalent.	
11	Students generate two equivalent	Before the warm up, select a student's cool down from the previous
	fractions, but don't show or explain their reasoning around why any of the	lesson (name anonymous). Ask students to identify what the student did well and what the student needs to do to improve the
	fractions are equivalent.	cool down.
12		During the launch of the next day's activity, have students
10	Students correctly locate $\frac{3}{4}$ and $\frac{6}{8}$ on	brainstorm ways to partition number lines so that each part is the
	each number line, but their lack of	same size.
	precision causes them to say that $\frac{3}{4}$ and	
	are $\frac{6}{8}$ not equal.	
13	8	Before the practice problems, pass back the cool down and have a
10	Students say that $\frac{18}{4}$ is not a whole	discussion about this cool-down.
	number and write 2 as a fraction, but	
14	don't explain or show their reasoning.	63
14	Students state that $\frac{6}{4}$ and $\frac{3}{4}$ are	Before the warm-up, discuss ways to determine that $\frac{6}{4}$ and $\frac{3}{4}$ are not
	equivalent.	equivalent.
15	Students' diagrams indicate that they	Before the next day's warm-up, have students recap the important
	know which fraction is greater, but the	points of the previous lesson, specifically the meaning of
	symbol in the expression doesn't match	the symbols < and >.
10	their visual representation.	
16	Students explain that $\frac{4}{6}$ is greater than $\frac{4}{3}$	During the launch of the next day's activity, have students pair up
	because 6 is greater than 3.	and discuss what the denominator of a fraction tells us and how
		it might help us compare two fractions.

17	Students do not complete the	Before the practice problems, pass back the cool down and have
	statements that compare each pair of	students work in small groups to make corrections.
	fractions.	

Grade 3 Unit 6 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students record 2 inches or 3 inches for	During the launch of the next day's activity, have students discuss
	the length of the rectangle.	the meaning of the marks in between the whole-inch marks.
2	Students choose the ruler with the half-	Before the next day's warm-up, pass back the cool-down and
	inch marks to measure the pencil.	discuss how the ruler marked with quarter inches would give a
		measurement closer to the length of the pencil.
3	Students record a length of the worm	Before the next day's warm-up, pass back the cool-down and have
	that isn't to the nearest quarter inch,	students discuss whether they would describe the length of the
	such as $3\frac{1}{2}$ inches or 4 inches.	worm as $3\frac{1}{2}$ inches or 4 inches and the reasoning behind their
	2	choice.
4	Students select choices that indicate	Before the next day's warm-up have students discuss what the x's
-	they are mixing up the parts of the	on a line plot represent and what the numbers along the bottom of
	graph that represent the lengths of the	the line plot represent.
	objects and the number of objects (as in	
	options C or E).	
5	Students don't place x's at the locations	Before the practice problems, invite students to work in small
	on the line plot that correspond to the	groups to discuss a correct response to this cool-down.
	given lengths.	
6	Students select objects whose weight is	Before the warm-up, invite students to work in small groups to
	not about a kilogram.	discuss a correct response to this cool-down.
7	Reflection: Students have ideas they	After the warm-up in the next lesson, pair students up to discuss
	could share with a partner.	their responses.
8	Students say the volume is 2 liters or 4	Before the practice problems, invite students to work in small
	liters in the first container and 1 liter or	groups to discuss a correct response to this cool-down.
	2 liters in the second container.	
9	Students do not tell or write time to the	Before the warm-up, invite students to work in small groups to
	nearest minute, only the nearest 5	discuss a correct response to this cool-down.
10	minutes.	
10	Students do not determine the elapsed	During the launch of the next day's activity, brainstorm ways to
	time between the time Clare leaves	show your reasoning when solving time problems.
	school and the time her soccer practice	
11	begins. Students do not find a solution to	Before the next day's warm-up, pass back the cool-down and have
11	problems in which the time crosses the	students discuss ways to keep track of the time when it crosses the
	hour.	hour.
12	Students say that diagram B matches	Before the warm-up, invite students to work in small groups to
10	the given situation.	discuss a correct response to this cool-down.
13	Students choose the wrong operation to	Before the next day's warm-up, pass back the cool-down and
-•	solve the problem.	brainstorm strategies for solving the problem.
14	For the first problem, students add the	Before the warm-up, select a student's cool-down from the
	minutes but do not account for the	previous lesson (name anonymous). Ask students to identify what
	change in the hour.	the student did well and what the student needs to do to improve
	For the second problem, students move	the cool-down.
	forward in time by 24 minutes instead	
	of moving back.	

Grade 3 Unit 7 Cool-Down Guidance

Lesson	Response to Student Thinking	Next Day Support
1	Students choose statements that do not	Use the next day's warm-up to have students work in partners to
	describe the shape.	describe one of the shapes in detail.
2	Students only describe the number of	During the launch of the next day's activity, pass back the cool-
	sides the shape has.	down and discuss how the shape could be described in more
		detail.
3	Students choose a quadrilateral that	Before the warm-up, have students work in partners to discuss a
	isn't described by all of the hints.	correct response to this cool-down.
4	Students choose quadrilaterals that are	During the launch of the next day's activity, highlight important
	not rhombuses.	ideas from the previous lesson.
5	Students only identify the first shape as	Before the practice problems, pass back the cool-down and work in
	a quadrilateral or rhombus, but not	small groups to make corrections and discuss strategies.
	both.	
6	Students do not find the perimeter of	During the launch of the next day's activity, have students discuss
	the shape.	strategies they could use to find the perimeter of the shapes.
7	Students do not draw shapes with	Before the warm-up, pass back the cool-down and work in small
	perimeters of 32 units.	groups to make corrections and discuss strategies.
8	Students find the perimeter of the	Before the next day's warm-up, pass back the cool-down and have
	second shape, but they add each side	students brainstorm strategies they could use to find the perimeter
	length individually to find the sum.	of the second shape.
9	Students identify the side that is 32 feet	Before the practice problem, select a student's cool-down from the
	long (opposite of the given side) but not	previous lesson (name anonymous). Ask students to identify what
	the other two sides of the swimming	the student did well and what the student needs to do to improve
	pool.	the cool-down.
10	Students do not determine the amount	Before the warm-up, pass back the cool-down and have students
	of fencing Lin will need for her	work in small groups to make corrections and discuss strategies.
	rectangular garden.	
11	Students draw rectangles with an area	Launch the next day's activity by highlighting important ideas from
	of 18 square units instead of a	previous lesson including comparing and contrasting area and
	perimeter of 18 units.	perimeter.
12	Students draw rectangles that have a	Launch the next day's activity by highlighting important ideas from
	perimeter of 36 units instead of an area	previous lessons including comparing and contrasting area and
	of 36 square units.	perimeter.