Geometry Unit 1

Task 6: Rotations in the Plane

Plot the point A(1, 2).

- 1. *A'* is the point obtained by rotating point *A*, about the origin, 90° counterclockwise.
 - a. What are the coordinates of A'?
 - b. Explain how the rotation in *part a* changed the coordinates of point *A*.
- 2. What would be the coordinates of A' if the rotation was 90° clockwise rather than counterclockwise?

Plot points A(-1, 1) and B(-2, 3). Draw a line segment between the points.

- 3. Rotate line segment AB counterclockwise 90° about the origin. Label the endpoints A' and B' and state their coordinates.
- 4. Describe what happened to the line segment.
- 5. Consider the rotation of the segment in *Problem 3* and the point in *Problem 1*. Do you see a pattern? Explain.
- 6. Rotate line segment AB clockwise 90° about the origin. Label the endpoints A" and B" and state their coordinates.
- 7. Write a general rule for rotating the point (x, y), about the origin, 90° counterclockwise.
- 8. Write a general rule for rotating the point (x, y), about the origin, 90° clockwise.

Plot the point C(-1, 4).

- 9. Let C' represent the point obtained by rotating point C counterclockwise 180°, about the origin.
 - a. What are the coordinates of *C* '?
 - b. Explain how the rotation in *part a* changed the coordinates of point *C*.
- 10. What would be the coordinates of C' if the rotation was 180° clockwise rather than counterclockwise?

A quadrilateral has vertices at A(1, 4), B(4, 4), C(4, 1), and D(2, 1).

- 11. Rotate the quadrilateral 180° counterclockwise about the origin. Label the endpoints A', B', C', and D' and state their coordinates.
- 12. Describe a method for rotating a figure 180° counterclockwise about the origin.
- 13. Write a general rule for rotating the point (x, y) 180° about the origin.