Ch. 10 & 11 - Gases

I. Physical Properties

(p. 303 - 312)

A. Kinetic Molecular Theory

b Particles in an ideal gas...

have no volume.

- have elastic collisions.
- are in constant, random, straightline motion.
- don't attract or repel each other.
- have an avg. KE directly related to Kelvin temperature.

C. Characteristics of Gases

b Gases expand to fill any container.random motion, no attraction

b Gases are fluids (like liquids).no attraction

b Gases have very low densities.no volume = lots of empty space

C. Characteristics of Gases

b Gases can be compressed.
no volume = lots of empty space
b Gases undergo diffusion & effusion.
random motion

D. Temperature

b Always use absolute temperature (Kelvin) when working with gases.

Which shoes create the most pressure?

b Barometer

measures atmospheric pressure

Aneroid Barometer

E. Pressure

b Manometer

measures contained gas pressure

Bourdon-tube gauge

b KEY UNITS AT SEA LEVEL

101.325 kPa (kilopascal)

1 atm 760 mm Hg 760 torr 14.7 psi

Standard Temperature & Pressure

0°C 273 K -OR-1 atm101.325 kPa

Ch. 10 & 11 - Gases

II. The Gas Laws

(p. 313-322)

A. Boyle's Law

A. Boyle's Law

b The pressure and volume of a gas are inversely related

at constant mass & temp

B. Charles' Law

V

B. Charles' Law

b The volume and absolute temperature (K) of a gas are directly related

 at constant mass & pressure

B. Charles' Law

C. Gay-Lussac's Law

Temperature	Pressure	P/T
(K)	(torr)	(torr/K)
248	691.6	2.79
273	760.0	2.78
298	828.4	2.78
373	1,041.2	2.79

C. Gay-Lussac's Law

D

b The pressure and absolute temperature (K) of a gas are directly related

at constant mass & volume

D. Combined Gas Law

	E. Gas Law Problems		
	b A gas occupies 473 cm ³ at 36°C. Find its volume at 94°C.		
	СН	ARLES' LAW	
GIVE	GIVEN: T↑ V↑ WORK:		
$V_1 = c$	473 cm ³	$V_1V_1T_2 = V_2V_2T_1$	
$T_1 = 3$	36°C = 309K	$(473 \text{ cm}^3)(367 \text{ K})=V_2(309 \text{ K})$	
$V_2 = $?		
$T_2 = 9$	$94^{\circ}C = 367K$	$v_2 = 562 \text{ cm}^\circ$	

E. Gas Law Problems				
	b A gas occupies 100. mL at 150. kPa. Find its volume at 200. kPa.			
	BOYLE'S LAW			
GIVE	N: P↑V↓	WORK:		
$V_1 =$	100. mL	$P_1V_17_2 = P_2V_27_1$		
P ₁ = 150. kPa		(150.kPa)(100.mL)=(200.kPa)V ₂		
V ₂ = ? P ₂ = 200. kPa		V ₂ = 75.0 mL		

E. Gas Law Problems

b A gas occupies 7.84 cm³ at 71.8 kPa & 25°C. Find its volume at STP. COMBINED GAS LAW

GIVEN: $\mathbf{P}^{\uparrow} \mathbf{T} \downarrow \mathbf{V} \downarrow$ WORK:

 $V_1 = 7.84 \text{ cm}^3$ $P_1V_1T_2 = P_2V_2T_1$

 $P_1 = 71.8 \text{ kPa}$

 $T_1 = 25^{\circ}C = 298 \text{ K}$

V₂ = ?

 $P_2 = 101.325 \text{ kPa}$ $T_2 = 273 \text{ K}$ (71.8 kPa)(7.84 cm³)(273 K) =(101.325 kPa) V₂ (298 K)

a |V₂ = 5.09 cm³

E. Gas Law Problems

b A gas' pressure is 765 torr at 23°C. At what temperature will the pressure be 560. torr? GAY-LUSSAC'S LAW

GIVEN: $\mathbf{P} \downarrow \mathbf{T} \downarrow$ | WORK:

 $P_1 = 765 \text{ torr}$

 $T_1 = 23^{\circ}C = 296K$

 $P_2 = 560.$ torr

 $T_2 = ?$

 $(765 \text{ torr})T_2 = (560. \text{ torr})(309\text{K})$

 $P_1 V_1 T_2 = P_2 V_2 T_1$

 $T_2 = 226 \text{ K} = -47^{\circ}\text{C}$

Ch. 10 & 11 - Gases

III. Ideal Gas Law (p. 334-335, 340-346)

A. Avogadro's Principle

b Equal volumes of gases contain equal numbers of moles

- at constant temp & pressure
- true for any gas

Merge the Combined Gas Law with Avogadro's Principle:

= R

nT UNIVERSAL GAS CONSTANT R=0.0821 L·atm/mol·K R=8.315 dm³·kPa/mol·K You don't need to memorize these values!

UNIVERSAL GAS CONSTANT R=0.0821 L·atm/mol·K R=8.315 dm³·kPa/mol·K

PV=nRT

C. Ideal Gas Law Problems

b Calculate the pressure in atmospheres of 0.412 mol of He at 16°C & occupying 3.25 L.

GIVEN:

P = ? atm

n = 0.412 mol

 $T = 16^{\circ}C = 289 \text{ K}$

V = 3.25 L

R = 0.0821L·atm/mol·K

PV = nRT

WORK:

P(3.25)=(0.412)(0.0821)(289) L mol L·atm/mol·K K

P = 3.01 atm

C. Ideal Gas Law Problems

b Find the volume of 85 g of O₂ at 25°C and 104.5 kPa.

GIVEN:	WORK:	
V = ?	85 g 1 mol = 2.7	7 mol
n = 85 g = 2.7 mol	32.00 g	
$T = 25^{\circ}C = 298 K$	PV = nRT	
P=104.5 kPa	(104.5)V=(2.7) (8.315) (298)	
$R = 8.315 \text{ dm}^{3} \text{ kPa/mol} \text{ K}$	kPa mol dm³⋅kPa/r	nol⋅K K
	$V = 64 \text{ dm}^3$	

Ch. 10 & 11 - Gases

IV. Gas Stoichiometry at Non-STP Conditions (p. 347-350)

A. Gas Stoichiometry

b Moles ↔ Liters of a Gas:
• STP - use 22.4 L/mol
• Non-STP - use ideal gas law

b Non-STP

Given liters of gas?
Start with ideal gas law
Looking for liters of gas?
Start with stoichiometry conv.

B. Gas Stoichiometry Problem

b What volume of CO₂ forms from 5.25 g of CaCO₃ at 103 kPa & 25°C? $CaCO_3 \rightarrow CaO$ + CO_2 ? 5.25 g non-STP Looking for liters: Start with stoich and calculate moles of CO_2 . 1 mol1 mol 5.25 CaCO₃ $CaCO_3$ CO_2 = 1.26 mol CO₂ 100.099 1 morestandingPlug this into the Ideal Gas Law to find liters.

B. Gas Stoichiometry Problem

b What volume of CO₂ forms from 5.25 g of CaCO₃ at 103 kPa & 25°C?

GIVEN:	WORK:
P=103 kPa	PV = nRT
V = ?	(103 kPa)V
n = 1.26 mol	=(1mol)(8.315dm ³ ·kPa/mol·K)(298K)
$T = 25^{\circ}C = 298 K$	$V = 1.26 \text{ dm}^3 \text{ CO}_2$
$R = 8.315 \text{ dm}^{3} \cdot \text{kPa/mol} \cdot \text{K}$	

	B. Gas	Sto	oichiome	try Problem					
	b How many grams of Al ₂ O ₃ are formed from 15.0 L of O ₂ at 97.3 kPa & 21°C?								
	4 AI	+	3 O ₂ –	$\rightarrow 2 AI_2O_3$					
			15.0 L non-STP	? g					
GIVE	IN:		WORK:	Given liters: Start with					
P=9	7.3 kPa		PV = nRT	Ideal Gas Law and calculate moles of O ₂ .					
V = c	V = 15.0 L (97.3 kPa) (15.0 L)		15.0 L)						
n = ?		= n (8.315dm ³ ·kPa/mol·K) (294K)							
T=2	$1^{\circ}C = 294$	K	n = 0.597	mol O_NEXT→					
R=8	8.315 dm³⋅kPa/i	mol⋅K							
	B. Ga	as Stoic	hiometr	y Problem					
--	--	--------------------------------	--------------------------------	-------------------------------------	--	--	--	--	--
	b How many grams of Al ₂ O ₃ are formed from 15.0 L of O ₂ at 97.3 kPa & 21°C?								
	4 A	Al + 3	$O_2 \rightarrow$	$2 AI_2O_3$					
Use stoich to convert moles of O ₂ to grams Al ₂ O ₃ . 15.0L 200-STP									
	0.597	2 mot	101.96 g						
		Al ₂ O ₃	Al ₂ O ₃	$= 40.6 \alpha \Delta l_2 \Omega_2$					
		3 mel 02	1 mot						
			$A_1_2O_3$						

Ch. 10 & 11 - Gases

V. Two More Laws (p. 322-325, 351-355) Read these pages first!

B. Dalton's Law

b The total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases.

$P_{total} = P_1 + P_2 + ...$

When a H₂ gas is collected by water displacement, the gas in the collection bottle is actually a mixture of H₂ and water vapor.

	B. Dalton's Law							
		b Hydrogen gas is collected over water at 22.5°C. Find the pressure of the dry gas if the atmospheric pressure is 94.4 kPa.						
	The total pressure in the collection bottle is equal to atmospheric pressure and is a mixture of H ₂ and water vapor.							
GIVEN:		WORK:						
P _{H2} = ?		$P_{total} = P_{H2} + P_{H2O}$						
P _{total} = 94.4 kPa		94.4 kPa = Р _{н2} + 2.72 kPa						
Р _{н20} = 2.72 kPa		Р _{H2} = 91.7 kРа						
	Look	up water-vapor pressure on p.899 for 22.5°C.		Sig Figs: Round to least number of decimal places.				

B. Dalton's Law

b A gas is collected over water at a temp of 35.0°C when the barometric pressure is 742.0 torr. What is the partial pressure of the dry gas?

The total pressure in the collection bottle is equal to barometric pressure and is a mixture of the "gas" and water vapor.

GIVEN:		WORK:		
P _{gas} = ?		$P_{total} = P_{gas} + P_{H2O}$		
$P_{total} = 742.0 \text{ torr}$		742.0 torr = P_{H2} + 42.2 torr		
Р _{H2O} = 42.2 torr		$P_{gas} = 699.8 \text{ torr}$		
Look up water on p.899	-vapor pressure for 35.0°C.		Sig Figs: Round to least number of decimal places.	

b Diffusion

 Spreading of gas molecules throughout a container until evenly distributed.

b Effusion

 Passing of gas molecules through a tiny opening in a container

b Speed of diffusion/effusion

- Kinetic energy is determined by the temperature of the gas.
- At the same temp & KE, heavier molecules move more slowly.
 ➤Larger m ⇒ smaller v

C. Graham's Law

b Graham's Law

- Rate of diffusion of a gas is inversely related to the square root of its molar mass.
- The equation shows the ratio of Gas A's speed to Gas B's speed.

$$\frac{v_A}{v_B} = \sqrt{\frac{m_B}{m_A}}$$

C. Graham's Law

b Determine the relative rate of diffusion for krypton and bromine.

The first gas is "Gas A" and the second gas is "Gas B". Relative rate mean find the ratio "v_A/v_B".

$$\frac{v_A}{v_B} = \sqrt{\frac{m_B}{m_A}}$$

$$\frac{v_{Kr}}{v_{Br_2}} = \sqrt{\frac{m_{Br_2}}{m_{Kr}}} = \sqrt{\frac{159.80 \text{ g/mol}}{83.80 \text{ g/mol}}} = 1.381$$

Kr diffuses 1.381 times faster than Br₂.

C. Graham's Law

b A molecule of oxygen gas has an average speed of 12.3 m/s at a given temp and pressure. What is the average speed of hydrogen molecules at the same conditions?

TEAM PRACTICE!

b Work the following problems in your book. Check your work using the answers provided in the margin. • p. 324 SAMPLE PROBLEM 10-6 **PRACTICE 1 & 2** • p. 355 SAMPLE PROBLEM 11-10 ► PRACTICE 1, 2, & 3

Gas Laws Practice Workpout each problem on scratch Problems Click ANSWER to check your Click NEXT to go on to the next problem.

CLICK TO START

b Helium occupies 3.8 L at -45°C. What volume will it occupy at 45°C?

ANSWER #1 $V_1 = 3.8 L$ **T**₁ = -45° C = 228 K $V_2 = ?$ **b** $T_2 = 45^{\circ}C = 318$ K

BACK TO PROBLEM

b Ammonia gas occupies a volume of 450. mL at 720. mm Hg. What volume will it occupy at standard pressure?

ANSWER #2 $V_1 = 450. \text{ mL}$ **b** P₁ = 720. mm Hg $V_2 = ?$ $P_2 = 760. \text{ mm Hg}$

BOYLE'S LAW $\mathbf{P}_1 \mathbf{V}_1 \mathbf{T}_2 = \mathbf{P}_2 \mathbf{V}_2 \mathbf{T}_1$

 $V_2 = 426 \text{ mL}$

QUESTION #3

b A gas at STP is cooled to -185°C. What pressure in atmospheres will it have at this temperature (volume remains constant)?

ANSWER #3 $P_1 = 1$ atm **b** $T_1 = 273 \text{ K}$ **b** $P_2 = ?$ $T_2 = -185^{\circ}C = 88$ K

GAY-LUSSAC'S **I**AW $P_1V_1T_2 = P_2V_2T_1$ $P_2 = 0.32$ atm

b A gas occupies 1.5 L at 850 mm Hg and 15°C. At what pressure will this gas occupy 2.5 L at 30.0°C?

QUESTION #5

b Chlorine gas has a pressure of 1.05 atm at 25°C. What pressure will it exert at 75°C?

ANSWER #5 $P_1 = 1.05$ atm **b** $T_1 = 25^{\circ}C = 298 \text{ K}$ **b** $P_2 = ?$ $T_2 = 75^{\circ}C = 348 \text{ K}$

GAY-LUSSAC'S **I**AW $P_1V_1T_2 = P_2V_2T_1$

 $P_2 = 1.23$ atm

b A gas occupies 256 mL at 720 torr and 25°C. What will its volume be at STP?

ANSWER #6 $b V_1 = 256 mL$ **D** $P_1 = 720$ torr $b T_1 = 25^{\circ}C = 298$ K $V_2 = ?$ **b** $P_2 = 760$. torr **b** $T_2 = 273 \text{ K}$

COMBINED GAS LAW $P_1V_1T_2 = P_2V_2T_1$

 $V_2 = 220 \text{ mL}$

b At 27°C, fluorine occupies a volume of 0.500 dm³. To what temperature in degrees **Celsius** should it be lowered to bring the volume to 200. mL?

ANSWER #7 $b T_1 = 27^{\circ}C = 300. K CHARLES' LAW$ $V_1 = 0.500 \text{ dm}^3$ $P_1V_1T_2 = P_2V_2T_1$ **b** $T_2 = ?^{\circ}C$ $V_2 = 200. \text{ mL} = 0.200 \text{ T}_2 = -153^{\circ}\text{C}$ dm³ (120 K)

BACK TO PROBLEM

b A gas occupies 125 mL at 125 kPa. After being heated to 75°C and depressurized to 100.0 kPa, it occupies 0.100 L. What was the <u>original</u> temperature of the gas?

ANSWER #8 $V_1 = 125 \text{ mL}$ **D** P₁ = 125 kPa $T_2 = 75^{\circ}C = 348 \text{ K}$ $P_2 = 100.0 \text{ kPa}$ $V_2 = 0.100 L = 100.$ mL $T_1 = ?$ h

COMBINED GAS LAW $P_1V_1T_2 = P_2V_2T_1$ $T_1 = 544$ K (271°C)

NEXT

b A 3.2-L sample of gas has a pressure of 102 kPa. If the volume is reduced to 0.65 L, what pressure will the gas exert?

ANSWER#9 $V_1 = 3.2 L$ **D** P₁ = 102 kPa $V_2 = 0.65 L$ $P_2 = ?$

$P_2 = 502 kPa$

NEXT

b A gas at 2.5 atm and 25°C expands to 750 mL after being cooled to 0.0°C and depressurized to 122 kPa. What was the <u>original</u> volume of the gas?

ANSWER #10 $P_1 = 2.5 \text{ atm}$ COMBINED **b** $T_1 = 25^{\circ}C = 298 \text{ K}$ GAS LAW $P_1V_1T_2 = P_2V_2T_1$ $V_2 = 750 \text{ mL}$ **b** $T_2 = 0.0^{\circ}C = 273 \text{ K}$ $P_2 = 122 \text{ kPa} = 1.20$ $V_1 = 390 \text{ mL}$ atm $V_1 = ?$

R = 0.0821 L·atm/mol·K = 8.315 dm³·kPa/mol·K

Ideal Gas Law & Gas 1) Work out each problem on scratch paper. 2) Click ANSWER to check your answer. 3) Click NEXT to go on to the next problem.

b How many grams of CO₂ are produced from 75 L of CO at 35° C and 96.2 kPa? b2CO + O₂ \rightarrow 2CO₂

Find the new molar volume: n = 1 molV = ? D b P = 96.2 kPa **D** T = 35° C = 308 K b R = 8.315 dm³·kPa/mol·K **BACK TO PROBLEM**

PV = nRT

$V = 26.6 \text{ dm}^3/\text{mol}^3$

How many moles of oxygen will occupy a volume of 2.5 L at 1.2 atm and 25°C?

b n = ?
b V = 2.5 L
b P = 1.2 atm
b T = 25°C = 298 K
b R = 0.0821
L.atm/mol.K

PV = nRT

n = 0.12 mol

QUESTION #3

b What volume will 56.0 grams of nitrogen (N₂) occupy at 96.0 kPa and 21°C?

b ∀ = ?
b n = 56.0 g = 2.00 mol
b P = 96.0 kPa
b T = 21°C = 294 K
b R = 8.315 dm³⋅kPa/mol⋅K

PV = nRT

$V = 50.9 \text{ dm}^3$

b What volume of NH₃ at STP is produced if 25.0 g of N₂ is reacted with excess H₂? $bN_2 + 3H_2 \rightarrow 2NH_3$

ANSWER

b What volume of hydrogen is produced from 25.0 g of water at 27°C and 1.16 atm? $b2H_2O \rightarrow 2H_2 + O_2$

b Find the new molar volume: n = 1 molV = ? D b P = 1.16 atm **b** T = 27°C = 300. K **b** R = $0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$

PV = nRT

V = 21.2 L/mol

		$2H_2O$	\rightarrow 2	2H ₂ +	O ₂	
		25.0 g		? L		
2	5.0 g H ₂ O	1 mol H ₂ O	2 moi H ₂	21.2 L H ₂	7	ΟΔΤ
		18.02 g H ₂ O	2 mot H ₂ O	1 møl H ₂	4	H ₂
	BACK TO PROBLEM				XT	

b How many atmospheres of pressure will be exerted by 25 g of CO₂ at 25°C and 0.500 L?

b P = ?
b n = 25 g = 0.57 mol
b T = 25°C = 298 K
b V = 0.500 L
b R = 0.0821 L.atm/mol·K

PV = nRT

P = 28 atm

b How many grams of CaCO₃ are required to produce 45.0 dm³ of CO₂ at 25°C and 2.3 atm? b CaCO₃ + 2HCI \rightarrow CO₂ + H₂O +

b Find the new molar volume: n = 1 molV = ? D b P = 2.3 atm **b** T = 25°C = 298 K **b** R = $0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$ **BACK TO PROBLEM**

PV = nRT

V = 11 L/mol

$CaCO_3 + 2HCI \rightarrow CO_2 + H_2O + CaCl_2$ **?** g 45.0 dm³ 1 mol 1 mol 100.09 g 002 CaCO3 CaCO3 45.0dm13 = 410 g 11 dm3 1 mol 1 mol CO2 CO2 CaCO3 CaCO₃ BACK TO PROBLEM

b Find the number of grams of CO₂ that exert a pressure of 785 torr at 32.5 L and 32°C.

n = ? P = 785 torr = 1.03 atm V = 32.5 Lb **b** T = 32° C = 305 K **b** R = 0.0821 L.atm/mol·K

```
PV = nRT
n = 1.34 mol
        59.0 g CO<sub>2</sub>
```

BACK TO PROBLEM

