FORCES

Chapter 4

Standards for this Unit:

- SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects.
 - d. Measure and calculate the magnitude of frictional forces and Newton's three Laws of Motion.
 - h. Determine the conditions required to maintain a body in a state of static equilibrium.

What is a Force?

- A force is a push or a pull exerted on an object
- Whenever there is an *interaction* between two objects, there is a force upon each of the objects.
 - When the *interaction* ceases, the two objects no longer experience the force. Forces <u>only</u> exist as a result of an interaction.
- Forces can cause objects to speed up, slow down, or change directions.

Think About a Book on a Table

- If you wanted it to move, you could push or pull it.
- These are both forces you would exert on the book.
- If you push harder, that is a greater force
 - This would result in having a greater effect on the motion of the textbook.
- The direction of your push is the direction the book moves.
- In this case, we call the book a "system"
- A system is the object of interest.
 - Everything around the system which exert forces on it is called the external world.
- Your hand and gravity are part of the external world.

Representing Forces

- Forces have both magnitude and direction.
 - So they are ____.
- The symbol **F** represents a vector.
 - Ex. F_{gravity}
- Since forces are vectors, we represent them just like any other vector
 - Use an arrow pointing in the same direction as the vector
- We can also add forces together the same way we added vectors in the last unit
 - Tip to Tail
 - Pythagorean Theorem
 - Other Trig functions 🙂

Units of Force

- Forces depend on mass and acceleration
- Standard unit for mass = kg
- Standard unit for acceleration = m/s/s
- So forces are measured in kg*m/s/s
- These are called Newtons
 - Abbreviated N
- 1 lb = 4.448 N
- 1 N = 0.225 lb

1 Newton = 1 kg*

Types of Forces

- There are two main types of forces
 - Contact
 - Field

Contact Force

- Contact Force
 - Exists when an object from the external world touches a system and exerts a force on it
- Think About the Book on the Table
 - If you push it, you are exerting a contact force
 - If you put it down, no longer interacting... so no more force from you
 - But table is touching it- table is now exerting a force

Field Force

- An object can move without something directly touching it
- What if you dropped the book?
 - It falls due to gravity
- Gravitational Force is a field force.
 - They affect movement without being in physical contact
- Can you think of other field forces?
 - Magnetic fields
 - Electric Forces
 - Nuclear Forces

Interactions

- Forces result from interactions
 - Each force has a cause called the agent
- You have to determine the agent exerting the force as well as the system it is being exerted on.
- What about when you push a book on a table?
 - Agent= your hand
 - CAUSES a contact force on the...
 - System= the book
- When you drop your book?
 - Agent= the mass of the earth
 - CAUSES the gravitational force acting on the
 - System= the book

More Types of Forces

 The two main types of forces (field and contact) can be further divided into specific forces

Gravity Force (also known as Weight) Fgrav

- The force of gravity is the force with which the earth, moon, or other massively large object attracts another object towards itself.
- By definition, this is the weight of the object.
- All objects upon earth experience a force of gravity that is directed "downward" towards the center of the earth. The force of gravity on earth is always equal to the weight of the object

Applied Force - Fapp

- An applied force is a force that is applied to an object by a person or another object.
- If a person is pushing a desk across the room, then there is an applied force acting upon the object.
- The applied force is the force exerted on the desk by the person.

Normal Force - Fnorm

- The normal force is the support force exerted upon an object that is in contact with another stable object.
- For example, if a book is resting upon a surface, then the surface is exerting an upward force upon the book in order to support the weight of the book.
- On occasions, a normal force is exerted horizontally between two objects that are in contact with each other.
 - For instance, if a person leans against a wall, the wall pushes horizontally on the person.

Normal Force

Friction Force - F_{frict}

- The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it.
- There are at least two types of friction force -
 - Sliding
 - static.
- Thought it is not always the case, the friction force often opposes the motion of an object.
- For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion.
- More on friction later...

Friction

FRICTION IS & FORCE THAT ACTS IN AN OPPOSITE DIRECTION TO MOVEMENT.

Air Resistance Force - Fair

- The air resistance is a special type of frictional force that acts upon objects as they travel through the air.
- The force of air resistance is often observed to oppose the motion of an object.
- This force will frequently be neglected due to its negligible magnitude (and due to the fact that it is mathematically difficult to predict its value).
- It is most noticeable for objects that travel at high speeds (e.g., a skydiver or a downhill skier) or for objects with large surface areas.

Air Resistance

Tension Force - Ftens

- The tension force is the force that is transmitted through a string, rope, cable or wire when it is pulled tight by forces acting from opposite ends.
- The tension force is directed along the length of the wire and pulls equally on the objects on the opposite ends of the wire.
- The tension force is always directed *along the length* of the thing doing the pulling (string, rope, chain).

Tension

Spring Force - Fspring

- The spring force is the force exerted by a compressed or stretched spring upon any object that is attached to it.
- An object that compresses or stretches a spring is always acted upon by a force that restores the object to its rest or equilibrium position.
- For most springs, the magnitude of the force is directly proportional to the amount of stretch or compression of the spring.
- The force F_{spring} of the spring acts upward on the suspended mass. The downward force on the mass is its weight (due to the force of gravity)

Spring Force

Thrust Force - Fthrust

- A general term for the forces that move objects
- Typically associated with rockets
- Thrust is a mechanical force, so the propulsion system must be in physical contact with a working fluid to produce thrust.
- When a system expels, or accelerates, mass in one direction the accelerated mass will cause a force of equal magnitude but opposite direction on that system.

National Aeronautics and Space Administration

What is Thrust?

PRACTICE

Identify the following...

- ... as either
 - Contact force
 - Field Force
 - Not a Force
- Weight
- Mass
- Push of a hand
- Thrust
- Resistance
- Air resistance
- Spring force
- acceleration

- Field force
- Not a force
- Contact force
 - Contact force
- Field force
- Contact force
- Contact force
- Not a force

• A block hangs at rest from the ceiling by a piece of rope. Consider the forces acting on the block.

Gravity and Tension

• A block hangs from the ceiling by a spring. Consider the forces acting on the block when it is at rest.

Gravity and Spring

A ball is shot into the air with a spring-loaded cannon.
Consider the forces acting on the ball while it is in the air.

Gravity and Air Resistance

 A skydiver (who hasn't opened his parachute yet) falls at terminal velocity. Consider the forces acting on the skydiver.

• A block rests on top of a table. Consider only the forces acting upon the block.

Gravity and Normal

• A block slides across the top of a table. Consider only the forces acting upon the block.

Gravity, Normal, Friction and Air Resistance

• A block rests on an incline plane without sliding. Consider the forces acting on the block.

Gravity, Normal, Friction