NF.1	NF.1 Add and subtract fractions and mixed numbers with unlike denominators by finding a	
com	common denominator and equivalent fractions to produce like denominators.	
4.0	The student will be able to do the following:	
	Solve word problems involving the addition and subtraction of three or more fractions	
	with unlike denominators.	
	For example, when given that after a whole day of selling slices of pie all a baker has	
	left is $\frac{1}{4}$ of one pie, $\frac{5}{12}$ of a second pie, and $\frac{2}{9}$ of a third, and when given that a	
	customer comes in and orders half a pie, determine whether the baker still has	
	enough pie to fill the order and, if he does, determine how much pie he will have left	
	afterwards.	
3.5	In addition to score 3.0 performance, partial success at score 4.0 content	
3.0	The student will be able to do the following:	
	Add and subtract fractions and mixed numbers with unlike denominators, by finding a	
	common denominator using LCM, a diagram, or model with at least 80 percent or	
25	No major orrors or omissions regarding score 2.0 content, and partial success at score 3.0	
2.5	content	
2.0	The student will be able to complete at least 50% of the following:	
	 Convert mixed numbers to improper fractions. 	
	• Use a number line to represent and compare fractions with unlike denominators.	
	• Generate equivalent fractions by multiplying both the numerator and denominator of a	
	given fraction by the same whole number. For example, when given the fraction $\frac{3}{4}$,	
	multiply both the numerator and the denominator by 2 to generate the equivalent	
	fraction $\frac{6}{2}$.	
	 Explain that addition and subtraction of fractions with unlike denominators can be 	
	accomplished by converting them to equivalent fractions with a common denominator	
	 Identify the least common multiple of two whole numbers by counting multiples of the 	
	numbers until a common value is found.	
	For example, identify the least common multiple of 5 and 6 by counting in multiples	
	of 5 until arriving at a number that is also a multiple of 6 .	
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content	
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:	
	Denominator, Numerator, Fraction	
	Equivalent Fraction, Multiple, Factor, Number line	
	Improper Fraction, Mixed Number, Whole Number	
	Sum, Difference	

NF.4 by a	a. Apply and use understanding of multiplication to multiply a fraction or whole number fraction. Examples: $(\frac{a}{b} \times q)$ as $(\frac{a}{b} \times \frac{q}{1})$ and $(\frac{a}{b} \times \frac{c}{d})$ as $(\frac{ac}{bd})$.
4.0	The student will be able to do the following:
	• Find an unknown factor in a multiplication problem involving fractional factors.
	For example, when given the multiplication problem $rac{3}{4} imes \square = rac{1}{3}$, recognize the problem
	as asking "what portion of $rac{3}{4}$ of a whole is equal to $rac{1}{3}$ of that same whole?"; draw a
	rectangle divided into 4 columns with 3 columns shaded red to represent a $rac{3}{4}$ portion of a
	whole; further divide the same rectangle into 3 rows with 1 row shaded blue to
	represent $rac{1}{3}$ of the whole; count the number of red cells and the number of blue cells;
	then ask the question "what size portion of the red cells would the blue cells be?" to
	determine that the missing factor is $\frac{4}{9}$.
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	• Multiply fractions by fractions arithmetically with at least 80 percent or higher accuracy.
	For example, evaluate $\frac{8}{3} \times \frac{1}{2}$, $\frac{4}{7} \times \frac{2}{3}$, and $5\frac{1}{6} \times \frac{13}{9}$ by multiplying the respective numerators
	and denominators of each pair of numbers).
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% of the following:
	 Multiply fractions by whole numbers or set the equation up for solving and finding the product.
	• Explain that $3 \times \frac{7}{9}$ is the same as $3 \times \left(7 \times \frac{1}{9}\right) = \left(3 \times 7\right) \times \frac{1}{9} = 21 \times \frac{1}{9} = \frac{21}{9}$.
	• Explain that the multiplication of a fraction by a fraction can be accomplished by
	multiplying the numerators and multiplying the denominators. For example, $\frac{3}{4} \times \frac{2}{3} =$
	$\frac{(3 \times 2)}{(4 \times 3)} = \frac{6}{12}.$
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:
	 Associative, Commutative, or Distributive Property
	Fraction, Mixed Number, Improper Fraction, Whole Number, Unit Fraction
	Numerator, Denominator
	Order of Operations, Multiply, Product

NF.7	a. Interpret division of a unit fraction by a non-zero whole number and compute such	
quot	uotients. For example, create a story context for $\frac{1}{3} \div 4$, and use a visual fraction model to show	
the quotient. Use the relationship between multiplication and division to explain that $\frac{1}{3} \div 4 = \frac{1}{12}$		
beca	$use \frac{1}{12} \times 4 = \frac{1}{3}.$	
4.0	The student will be able to do the following:	
	 Divide unit fractions by smaller unit fractions. 	
	For example, evaluate $\frac{1}{3} \div \frac{1}{9}$ by using a number line to determine how many times a $\frac{1}{9}$	
	portion of a whole fits into a $rac{1}{3}$ portion of the same whole.	
3.5	In addition to score 3.0 performance, partial success at score 4.0 content	
3.0	The student will be able to do the following:	
	 Divide a unit fraction by a whole number with at least 80 percent or higher accuracy. 	
	For example, evaluate $\frac{1}{3} \div 6$ and then verify the answer by using a number line to	
	demonstrate that dividing $rac{1}{3}$ into 6 equal portions produce smaller portions that are $rac{1}{18}$ of	
	an entire whole.	
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content	
2.0	The student will be able to complete at least 50% of the following:	
	 Partition a given unit fraction into a given number of equal portions and identify the size of one of those smaller portions in relation to the entire whole. 	
	For example, when given the unit fraction $rac{1}{4}$ represented as one shaded portion of a whole	
	that has been divided into 4 equal portions, further partition the unit fraction into 3 equal	
	portions and reason that one of those smaller portions is equal to $\frac{1}{12}$ of the entire whole	
	because 3 of them fit into the unit fraction and there are 4 unit fractions in the whole.	
	• Explain that dividing a unit fraction by a whole number will produce a smaller unit fraction.	
	 Students understand that multiplying by the reciprocal with give them the solution needed. 	
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content	
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:	
	Associative, Commutative, or Distributive Property	
	Fraction, Mixed Number, Improper Fraction, Whole Number, Unit Fraction	
	Numerator, Denominator	
	Dividend, Divisor, Number line	

NF.7b.	NF.7b. Interpret division of a whole number by a unit fraction and compute such quotients. For	
example, create a story context for $4 \div \frac{1}{5}$, and use a visual fraction model to show the quotient.		
Use the	Use the relationship between multiplication and division to explain that $4 \div \frac{1}{5} = 20$ because 20 ×	
$\frac{1}{5}$ = 4.		
4.0	The student will be able to do the following:	
	Divide unit fractions by smaller unit fractions.	
	For example, evaluate $\frac{1}{3} \div \frac{1}{9}$ by using a number line to determine how many times a $\frac{1}{9}$	
	portion of a whole fits into a $rac{1}{3}$ portion of the same whole.	
3.5	In addition to score 3.0 performance, partial success at score 4.0 content	
3.0	The student will be able to do the following:	
	• Divide a whole number by a unit fraction with at least 80 percent or higher accuracy.	
	For example, evaluate $8 \div rac{1}{5}$ and then verify the answer by using a number line to	
	demonstrate that $rac{1}{5}$ goes into 8 a total of 40 times.	
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content	
2.0	The student will be able to complete at least 50% of the following:	
	 Explain that the number of times a given unit fraction can fit into a single whole is equal to the denominator of the unit fraction. 	
	For example, $rac{1}{5}$ can fit into 1 five times because $rac{1}{5}$ represents one of the portions of a	
	single whole that has been divided into 5 equal portions.	
	• Describe a division problem as asking the question "how many or how much of the divisor	
	fits into the dividend?" For example, the division problem $5 \div \frac{1}{8}$ is equivalent to asking,	
	"how many times does $\frac{1}{8}$ fit into 5?"	
	• Explain that a whole number can be divided by a unit fraction by first determining how many times the unit fraction fits into 1 and then multiplying that number by the whole	
	number.	
	• Explain that dividing a whole number by a unit fraction will produce a larger whole	
	number.	
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content	
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:	
	Associative, Commutative, or Distributive Property	
	Fraction, Mixed Number, Improper Fraction, Whole Number, Unit Fraction	
	Numerator, Denominator	
	Dividend, Divisor, Number line	

NBT.3a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)$.	
4.0	The student will be able to do the following:
	 Express decimal numbers using expanded notation.
	For example, when given the number 67,457.397 the student can then show the number in expanded Notation e.g., (6 x 10^4) + (7 x 10^3) + (4 x 10^2) + (5 x 10^1) + (3 x 0.1) + (9 x 0.01)
	+ (7 x 0.001).
	Compare numbers beyond millions by reasoning about place value For events, when given the numbers 24,000,000,000,000, and 12,000,000,000, events
	For example, when given the numbers 24,000,000,000,000 and 12,000,000,000, explain that the second number is 2,000 times greater than the first number because 24 is twice
	as large as 12 and the digits 24 in the first number sit three places to the left of the digits
	12 in the second number).
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	Read, write, or recognize decimals numbers using base ten numerals, number names, and
	expanded form with at least 80 percent or higher accuracy.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% of the following:
	• Explain that decimal place values represent fractions. For example, explain that the digit 5 in
	1.56 represents $\frac{1}{10}$.
	• Express decimal values as fractions or mixed numbers. For example, express 1.34 as $1\frac{34}{100}$.
	 Express a decimal value in terms of a given decimal place. For example, express 1.05 as 105 bundredths or 10.5 tenths
	• Write decimal values in expanded form. For example, write 47.36 as $4 \times 10 + 7 \times 1 + 3 \times 10^{-1}$
	$\frac{1}{10} + 6 \times \frac{1}{100}$.
	• Explain that the expanded form of a number represents that number as the sum of the place
	values represented by each of its digits, in which each value is represented as a multiple of a
	power of 10.
	For example, when given the number 576, explain that the digit 5 represents 5 hundreds (
	5×100), the digit 7 represents 7 tens (7 \times 10), and the digit 6 represents 6 ones (6 \times 1),
1 5	and explain that the expanded form of the number $5/6$ is $(5 \times 100) + (7 \times 10) + (6 \times 1)$.
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	The student will be able to recognize or recall the meaning of the specific vocabulary, including:
	Decimal Fraction, Decimal Place Value, Decimal Point, Decimal Value
	Equivalent Fractions, Expanded form Fraction Mixed Number Unit Fraction
	Place Value. Whole Number

NBT.4 Use place value understanding to round decimals up to the hundredths place.

4.0	The student will be able to do the following:
	 Use mental computation and estimation strategies to assess the reasonableness of an
	answer at different stages of solving a problem
	For example, when given that a boy has 374 more baseball cards than a friend who has
	221 baseball cards, and when given that he then buys another 186 cards, use rounding to
	estimate that the number of baseball cards the boy started with should be close to 600
	and the number of cards he ended up with should be close to $800.$
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	Round or estimate any decimal number from the hundredth-place value to the millions place
	with at least 80 percent or higher accuracy.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% of the following:
	• Explain that "extra" zeros can be added to the end of a decimal value without changing its
	value. For example, the numbers 5.2, 5.20, and 5.200 all represent the same value.
	• Underline the number that is being rounding and realize it is the one that may or may not be
	changed.
	• Circle the number to the right of the number underlined and recognize the circled number as
	the "boss."
	 Recognize the place value of the number being rounded.
	 Recognize the value of the number being rounded.
	• Explain why the number being rounded may or may not change in value.
	• Explain that rounding a number to a given place estimates or approximates the value of the
	number to the nearest multiple of that place.
	For example, rounding a number to the nearest 10 approximates the value of that number
	to the nearest multiple of 10.
	 Identify situations in which rounding might be useful.
	For example, explain that rounding two addends and quickly calculating their sum can be
	useful for assessing whether or not the calculated sum of the unrounded addends is
	accurate.
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	The student will be able to recognize or recall the meaning of the specific vocabulary, including:
	Round, Estimate
	Place value, Place Value Chart
	Digit, Number
	Decimal, Whole Number

NBT.7 *Add and Subtract* decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between

addi	tion and subtraction; relate the strategy to a written method and explain the reasoning		
used	used.		
4.0	The student will be able to do the following:		
	Explain why the standard algorithm for the addition and subtraction of whole numbers can		
	be extended to the addition and subtraction of decimal values.		
	For example, reason about the uniformity of the base-ten place value system to explain		
	why the addition and subtraction of decimal values follows the same rules as the addition		
2 5	and subtraction of whole numbers.		
3.5	The student will be able to do the following:		
3.0	The student will be able to do the following:		
	• Add and subtract decimal values with at least 80 percent or higher accuracy.		
2 5	For example: evaluate $0.11 + 50.392$, $0.004 + 0.22$, $5.52 - 2.7$ and $0.59 - 2.57$.		
2.5	The student will be able to complete at least E0% of the following:		
2.0	Function that just as whole numbers must be aligned properly when performing addition and		
	• Explain that, just as whole humbers must be aligned property when performing addition and subtraction using the standard algorithm, desimal values must also be arranged so that the		
	subtraction using the standard algorithm, declinar values must also be alranged so that the same places are aligned with each other. For example, when calculating 81.52 ± 4.2 , the		
	values must be aligned so that the digit in the ones place of 81.52 is directly above or below		
	the digit in the ones place of 4.2.		
	 Explain that "extra" zeros can be added to the end of a decimal value without changing its 		
	value. For example, the numbers 5.2, 5.20, and 5.200 all represent the same value.		
	• Add zeroes as needed to the end of a decimal value so that it contains the same number of		
	decimal places as the number with which it is being added or subtracted. For example, when		
	given the problem $83.2 - 9.585$, add two extra zeroes to 83.2 to produce the equivalent		
	problem 83.200 – 9.585.		
	Align the decimal point in a sum or difference of decimal values with the decimal points in		
	the values being added or subtracted when adding or subtracting decimal values using the		
	standard algorithm.		
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content		
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:		
	 Decimal Place Value, Decimal Point, Decimal Value, Place Value 		
	Add, Subtract		
	Evaluate, Solution, Sum, Total, All together		
	Difference, Less than, Take away, How many more		

NBT.7 *Multiply* decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

	 Investigate patterns in the products and quotients of decimal values.
	For example: use knowledge of fractions or reasoning about place value to explain why the
	number of decimal places in the product of two decimal values will be equal to the sum of
	the number of decimal places in each factor, or why dividing a number by a decimal value
	less than 1 will result in a quotient that is larger than the dividend.
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	 Multiply decimal values with at least 80 percent or higher accuracy.
	For example: evaluate 7×0.26 , 1.5×14.6 , and 0.94×4.01 .
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% percent of the following:
	• Explain that multiplying a number by a fraction or decimal value is the same as taking several
	portions of that number.
	For example, explain that $0.2 imes 5$ is the same as "two-tenths of five."
	 Multiply decimal values using models or diagrams.
	 Explain that the multiplication of decimal values can be accomplished by multiplying each
	factor by 10 the number of times necessary to convert it to a whole number, multiplying the
	converted factors normally, and then dividing the product by 10 the same number of times
	both original factors were multiplied by 10.
	For example, when given the problem $1.5 imes2.47$, multiply both factors by powers of 10 to
	convert them to the whole numbers 15 and 247 ; multiply 15 and 247 using the standard
	algorithm to arrive at a product of 3,705; count the total number of times the original
	factors were multiplied by 10 (3); and then divide 3,705 by 10 three times to arrive at the
	final product of 3.705.
	• Explain that the multiplication of decimal values can be accomplished by arranging the
	factors according to the standard algorithm for whole-number multiplication, ignoring the
	decimal points and multiplying the factors as if they were whole numbers, counting the total
	number of digits in both factors that sit to the right of their decimal points, and then placing
	the decimal point in the product to the left of that same number of digits.
	For example, when given the problem 3.5×9.28 , ignore the decimal points and multiply
	the factors according to the standard algorithm for whole numbers, count the total
	number of digits to the right of the decimal points in the factors (3), and then place a
	decimal point to the left of the three rightmost digits of the product to arrive at a final
1 5	Product of 52.460.
1.5	The student will be able to recognize and recall the meaning of specific verse when y including:
1.0	The student will be able to recognize and recall the meaning of specific vocabulary, including.
	Easter Fraction Mixed Number Whole Number
	Product Standard Algorithm for Multiplication
	OI, Group of, Copies of

NBT.7 *Divide* decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

- 4.0 The student will be able to do the following:
 - Investigate patterns in the products and quotients of decimal values.

	For example: use knowledge of fractions or reasoning about place value to explain why the
	number of decimal places in the product of two decimal values will be equal to the sum of
	the number of decimal places in each factor, or why dividing a number by a decimal value
	less than 1 will result in a quotient that is larger than the dividend.
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	 Divide decimal values with at least 80 percent or higher accuracy.
	For example: evaluate $5 \div 0.25$, $3.6 \div 0.3$, and $1.38 \div 0.06$.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% pf the following:
	 Divide decimal values using models or diagrams.
	For example, when given the problem $1.6 \div 0.02$, represent the dividend (1.6) as 1 whole
	square divided into 100 equal portions with each portion shaded plus a second square
	divided into 100 equal portions with 60 portions shaded; identify the divisor (0.02) as
	representing 2 hundredths or two of the 100 equal portions; then count how many groups
	of 2 hundredths are represented in the diagram of the dividend to arrive at a quotient of
	80.
	 Explain that multiplying or dividing both the divided and divisor of a problem by the same
	number will produce a new dividend and divisor that have the same quotient as the original
	dividend and divisor.
	For example, given that $120 \div 40 = 3$, explain that $(120 \times 100) \div (40 \times 100) = 3$ and
	$(120 \div 10) \div (40 \div 10) = 3.$
	Explain that a division of decimal values can be simplified by multiplying both the dividend
	and divisor by the same power of 10 until both values are whole numbers and then dividing
	normally.
	For example, when given the problem $1.56 \div 0.12$, multiply both values by 100 to create
	the equivalent problem $156 \div 12$, then divide normally to arrive at a quotient of 13 .
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	The student will be able to recognize and recall the meaning of specific vocabulary, including:
	 Decimal Place Value, Decimal Point, Decimal Value, Place Value
	Factor, Fraction, Mixed Number, Whole Number
	Quotient, Divisor, Dividend, Remainder, Left over
	Divided by, Each, Share Equally

OA.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

		-
4.0	The stu	udent will be able to do the following:
	•	Develop a strategy to determine whether two expressions are equivalent
		For example: when given the phrase "half of the quotient of sixty-four and eight," and the
		numerical expressions $(64 \div 8) \div \frac{1}{2}$, $[(40 + 24) \div 8] \div 2$, $(40 \div 8 + 24 \div 8) \div 2$,

	$[64 \div (4+4)] \div 2$, and $(64 \div 4 + 64 \div 4) \div 2$, determine which expressions evaluate to
	the same value described by the phrase and explain why they do or do not using the order
	and properties of operations).
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions
	with these symbols with at least 80 percent or higher accuracy.
	For example: use the order of operations to solve example like the following expression 2
	+ (6 x 3) - 5.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% of the following:
	• Explain that raising a base to the second power is also known as "squaring" the base.
	For example, 3 ² is known as "three squared."
	• Explain that raising a base to the third power is also known as "cubing" the base.
	For example, 7 ³ is known as "seven cubed."
	 Apply the order of operations (parentheses, exponents, multiplication/division,
	addition/subtraction) to expressions involving exponents.
	 State the order of operations (parentheses, exponents, multiplication/division, addition/subtraction).
	• Explain that parentheses indicate that the operations inside the parentheses must be
	performed first. For example, the parentheses in the expression $(5+2) imes 7$ indicate that
	the sum of 5 and 2 must be evaluated before multiplying by 7, even though multiplication
	typically precedes addition in the order of operations.
	• Explain that a number written next to an expression in parentheses (typically written to the
	left of the expression) indicates multiplication of the expression by the number. For example,
	$2(1+5) = 2 \times (1+5).$
	• Explain that expressions inside parentheses can themselves contain parentheses and that
	brackets are substituted for the outer pair of parentheses in such cases.
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:
	• Exponent, Order of Operations, Power
	Product, Square, Difference, Sum, Total
	Divide, Power of Ten, Subtract Deventheres, Division, Duraliste, Durane, Fushingte,
	Parentneses, Division, Brackets, Braces, Evaluate
	 Commutative Property, Distributive Property, Associative Property

MD.2 Make a line plot to display a data set of measurements in fractions of a unit $\binom{1}{2}, \frac{1}{4}, \frac{1}{4}$	
¹ / ₈)	
4.0	The student will be able to do the following:

	• Use a ruler or line plot to calculate the difference in length between two objects with
	fractional measurements.
	For example, when given an object measuring $4\frac{1}{4}$ inches and a second object measuring $7\frac{2}{4}$
	inches, determine the difference in length between the two objects by counting the
	distance between $4\frac{1}{4}$ inches and $7\frac{2}{4}$ inches on a ruler or line plot.
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	• Display data sets of fractional measurements using line plots with at least 80 percent or
	higher accuracy.
	For example, when given a set of lengths measured to halves and quarters of an inch,
	represent the data set using a line plot.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% of the following:
	 Use operations on fractions to solve problems involving information presented in line plots.
	For example, given different measurements of liquid in identical beakers, find the amount
	of liquid each beaker would contain if the total amount in all the beakers were
	redistributed equally.
	Interpret a set of data and label a line plot.
	Locate fractions on a number line.
	Differentiate between different hash marks on a ruler.
	For example, differentiate between hash marks indicating 1/2 of an inch and those
	Indicating 1/4 of an inch.
	Represent data sets of whole-unit measurements using a line plot.
	Represent fractions on a number line.
	 Identify simple equivalent fractions.
	For example, explain that $\frac{1}{2}$ and $\frac{1}{4}$ represent the same point on the number line and are
	equivalent fractions.
	 Design a line plot with attributes (range and scale) suitable for displaying a particular data
	set.
	For example, when given the data set {3 1/4,3,4 1/4,3 3/4,3 1/2,3 3/4}, identify 3 and 4 1/4
	as the least and greatest data points in the set, identify 1/4 as the smallest fractional
	increment in the set, and design a line plot ranging from 3 to 4 1/4 with a 1/4 unit scale.
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	ine student will be able to recognize or recall the meaning of specific vocabulary, including:
	Denominator, Numerator, Mixed Number, Equivalent Fractions, Fraction
	Hair, Quarter, Eighth, Fourth, Unit, Whole Unit, Zero
	 Number line, Length, Whole Number

MD.5b Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems.

	Design various three-dimensional figures with different shapes and edge lengths, but with
	the same volume.
	For example, when given a three-dimensional figure composed of three right rectangular
	prisms that have volumes of 8 inches cubed, 24 inches cubed, and 30 inches cubed
	respectively, design a second three-dimensional figure composed of three right rectangular
	prisms that have volumes of 16 inches cubed, 28 inches cubed, and 18 inches cubed
	respectively, then demonstrate that both figures have a volume of 62 inches cubed.
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	Calculate the volume of three-dimensional figures of a right rectangular prism using the
	volume formula with at least 80 percent or higher accuracy.
	For example, when given a right rectangular prism with a length of 3 centimeters, a width
	of 7 centimeters, and a height of 10 centimeters, calculate the volume of the prism as the
	product of its edge lengths; when given a right rectangular prism with a height of 9 inches
	and whose base has an area of 24 inches squared, calculate the volume of the prism as the
2 5	product of the area of its base and its height.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% of the following:
	Identify right rectangular prisms.
	 Identify the formula for the volume of a rectangular prism (V=I×w×h).
	Represent volume in cubic units.
	Calculate the volume of right rectangular prisms.
	Identify three-dimensional figures composed of right rectangular prisms in real-world
	objects. For example, recognize a stack of bricks as being composed of right rectangular
	prisms.
	• Explain that a unit cube is a cube with a length, width, and height of 1 unit that has a volume
	Explain that the edge lengths of a rectangular prism can be multiplied in any order to
	calculate its volume. For example, the volume of a rectangular prism with a length of 10
	units, a width of 12 units, and a neight of 8 units can be calculated as (10×12)×8 of 10×(12×8)
	and still result in a volume of 900 units cubed.
	• Identify the formula for the area of a rectangle (A=I×W).
	• Explain that the volume of a prism can be calculated as the product of the area of its base
15	And its neight (v=b×n).
1.0	
1.0	I he student will be able to recognize or recall the meaning of specific vocabulary. Including
	Area, Base, Cubic Units, Unit, Volume Area, Base, Cubic Units, Unit, Volume
	 Area, Base, Cubic Units, Unit, Volume Edge Length, Face, Height, Length, Depth, Width

MD.5c. Recognize volume as additive. Find volumes of solid figures composed of two nonoverlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.

	Design various three-dimensional figures with different shapes and edge lengths, but
	with the same volume.
	For example, when given a three-dimensional figure composed of three right
	rectangular prisms that have volumes of 8 inches cubed, 24 inches cubed, and 30
	inches cubed respectively, design a second three-dimensional figure composed of
	three right rectangular prisms that have volumes of 16 inches cubed, 28 inches
	cubed, and 18 inches cubed respectively, then demonstrate that both figures have a
	volume of 62 inches cubed.
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	Calculate the volume of three-dimensional figures composed of right rectangular prisms
	with at least 80 percent or higher accuracy.
	For example, when given a three-dimensional figure composed of right rectangular
	prisms, calculate the volume of the figure as the sum of the volumes of its component
	prisms.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0
	content
2.0	The student will be able to complete at least 50% of the following:
	 Identify right rectangular prisms.
	 Calculate the volume of right rectangular prisms.
	 Explain that the volume of a three-dimensional figure is equal to the sum of the
	volumes of the smaller three-dimensional figures that make up the larger figure.
	 Decompose a three-dimensional figure composed of right rectangular prisms into its
	component prisms.
	Identify the relevant measurements of the component prisms that make up a three-
	dimensional figure composed of right rectangular prisms.
	• For example, when given a three-dimensional figure composed of right rectangular
	prisms, identify the measurements necessary to calculate the volume of each
	individual prism (height, length, width, and/or area of the base for each prism).
	Identify three-dimensional figures composed of right rectangular prisms in real-world
	objects.
	For example, recognize a stack of bricks as being composed of right rectangular
	prisms.
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:
	Area, Base, Cubic Units, Unit, Volume
	Edge Length, Face, Height, Length, Depth, Width
	Right Rectangular Prism, Three-Dimensional

G.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its

coor	dinates. Understand that the first number indicates how far to travel from the origin in			
the o	the direction of one axis, and the second number indicates how far to travel in the			
dire	direction of the second axis, with the convention that the names of the two axes and the			
coor	dinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).			
4.0	The student will be able to do the following:			
	• Investigate the effects of performing simple mathematical operations on x- and y-			
	coordinates.			
	For example, when given the ordered pair $(1,\!2)$, identify the ordered pairs that would			
	result if the coordinates were both multiplied by 2 or by 3 , plot the results and draw a			
	line to connect each set of points, then use the graph to predict what might happen if			
	the coordinates were both multiplied by 7, 10, or 15.			
3.5	In addition to score 3.0 performance, partial success at score 4.0 content			
3.0	The student will be able to do the following:			
	• Graph points on a coordinate plane with at least 80 percent or higher accuracy.			
	For example, when given a set of ordered pairs, graph the pairs as points on a			
2.5	coordinate plane.			
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0			
2.0	content			
2.0	The Student will be able to complete at least 50% of the following:			
	 Explain that a quadrant coordinate plane is a graph that takes the snape of a two- dimensional axid defined by a basis and a work on the snape of a two- 			
	dimensional grid defined by a norizontal number line known as the X-axis and a vertical			
	Further that the location of a point on a searchingte plane can be specified by identifying			
	• Explain that the location of a point on a coordinate plane can be specified by identifying the values on the x- and y-axes with which the point aligns			
	 Explain that the values on the x- and y-axes with which a given point aligns are known 			
	as the point's v- and v-coordinates and are typically notated as an ordered pair in which			
	the x-coordinate is listed first and the y-coordinate is listed second			
	 Identify the x- and y-coordinates of a given point on a coordinate plane 			
	 Explain that a point can be plotted on a coordinate plane by beginning at the origin and 			
	first counting along the x-axis until reaching the value that corresponds to the point's x-			
	coordinate, then counting upward until reaching the location that aligns with the value			
	on the y-axis that corresponds to the point's y-coordinate.			
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content			
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:			
	Axis, X-Axis, Y-Axis, X-Coordinate, Y-Coordinate			
	Two-Dimensional, Unit, Vertical, Point, Origin			
	Order Pair, Coordinates, Coordinate Plane			

G.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane and interpret coordinate values of points in the context of the situation. 4.0 The student will be able to do the following:

	Predict ways in which a graph of the relationship between two numerical patterns might
	change if the relationship were altered in a given way.
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	 Use the coordinate plane to solve problems with at least 80 percent or higher accuracy.
	For example, when given a coordinate plane in which the <i>x</i> -axis represents the numbered
	avenues of a city and the y-axis represents numbered streets, and when given that a
	person at the corner of 2 nd Avenue and 4 th Street walks 4 blocks north, 3 blocks east, and 1
	block south, identify the person's final location and then determine the shortest possible
	route they could have taken.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content
2.0	The student will be able to complete at least 50% of the following:
	Draw lines to connect points on a coordinate plane.
	• Explain that the horizontal or vertical distance between two points on a coordinate plane can
	be determined by counting the units between the points.
	For example, when given a graph of the points (4,6) and (4,10), the distance between the
	points can be determined by counting how many units (4) it takes to move from one point
	to the other.
	 Describe the movements necessary to move between points on a coordinate plane. For evenue, when given the starting point (2.5) and the ending point (4.1) evaluate that
	For example, when given the starting point (3,5) and the ending point (4,1), explain that
	reach the end point
	 Perform movements on a coordinate plane
	For example, when given the starting point (21) and the directions "move up 4 units
	right 5 units, and down 3 units " perform the movements and identify the point (72) as
	the resulting location.
	 Explain that coordinate planes are used to represent data that contains two values.
	For example, a coordinate plane would not be used to represent the number of students at
	a school, but a coordinate plane could be used to represent the number of students in
	each grade of the school.
	• Interpret points on a coordinate plane in terms of their mathematical or real-world context.
	For example, when given a coordinate plane that represents horizontal and vertical
	coordinates on a map, interpret the x- and y-coordinates of a given point as a location on
	the map.
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:
	Axis, X-Axis, Y-Axis, X-Coordinate, Y-Coordinate
	Two-Dimensional, Unit, Vertical, Point, Origin
	Order Pair, Coordinates, Coordinate Plane

G.4 Classify two-dimensional figures in a hierarchy based on properties (polygons, triangles, and quadrilaterals).

	 Investigate the properties of the categories of two-dimensional figures.
	For example, give an informal explanation for why the opposite angles of a
	parallelogram will always be congruent.
3.5	In addition to score 3.0 performance, partial success at score 4.0 content
3.0	The student will be able to do the following:
	Classify two-dimensional figures based on their properties with at least 80 percent or
	higher accuracy.
	For example, when given a two-dimensional figure, identify the categories to which the
	figure belongs and explain which properties place it within those categories.
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0
	content
2.0	The student will be able to complete at least 50% of the following:
	 Explain that two-dimensional figures can be classified based on their properties,
	including whether the figure is open or closed, whether it is concave or convex,
	whether or not the sides are curved, the number of sides, the lengths of the sides, the
	number of angles, the measures of the angles, and the number of parallel sides.
	 Explain that polygons are closed two-dimensional figures with all straight sides.
	• Explain that regular polygons are polygons in which all sides are congruent, and all
	angles have the same measure.
	• Explain that irregular polygons are polygons in which all sides are not congruent, and all
	angles do not have the same measure.
	• Explain that the classification of two-dimensional figures is hierarchical, and that the
	properties belonging to a particular category also belong to all subcategories of that
	category.
	For example, rectangles are a subcategory of parallelograms, therefore all rectangles
	have two pairs of congruent, parallel sides.
	• List subcategories of quadrilaterals (trapezoids, parallelograms, rhombuses, rectangles,
	squares) and their properties.
	For example, explain that rhombuses are a subcategory of parallelograms that have
	all congruent sides.
	• Explain that a figure may belong to more than one category. For example, a square is
	also a rectangle and a rhombus.
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content
1.0	The student will be able to recognize or recall the meaning of specific vocabulary, including:
	Acute, Obtuse, Right, Angle, Concave, Convex
	 Decagon, Heptagon, Irregular, Nonagon, Octagon
	Open, Closed, Parallel, Parallelogram, Pentagon, Perpendicular, Polygon
	Quadrilateral, Rectangle, Regular, Rhombus, Right Angle, Side, Square
	Trapezoid, Triangle, Two Dimensional