### Squares & Square Roots

Perfect Squares Lesson 12

+Also called a "perfect square"

+A number that is the square of a whole number

+Can be represented by arranging objects in a square.



#### MULTIPLICATION TABLE

|   | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|---|---|----|----|----|----|----|----|----|----|
| 1 | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
| 2 | 2 | 4  | 6  | 8  | 10 | 12 | 14 | 16 | 18 |
| 3 | 3 | 6  | 9  | 12 | 15 | 18 | 21 | 24 | 27 |
| 4 | 4 | 8  | 12 | 16 | 20 | 24 | 28 | 32 | 36 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 |

1 x 1 = 1
2 x 2 = 4
3 x 3 = 9
4 x 4 = 16

 $-1 \times 1 = 1$  $+ 2 \times 2 = 4$  $+ 3 \times 3 = 9$  $+4 \times 4 = 16$ **Activity:** Calculate the perfect squares up to 15<sup>2</sup>...

Square Numbers  $-1 \times 1 = 1$  $+9 \times 9 = 81$  $+ 2 \times 2 = 4$  $+ 10 \times 10 = 100$  $+ 3 \times 3 = 9$  $+ 11 \times 11 = 121$  $+ 4 \times 4 = 16$  $+ 12 \times 12 = 144$  $+ 5 \times 5 = 25$  $+ 13 \times 13 = 169$  $+ 14 \times 14 = 196$  $+ 6 \times 6 = 36$  $+ 15 \times 15 = 225$  $+7 \times 7 = 49$  $+ 8 \times 8 = 64$ 

### Activity: Identify the following numbers as perfect squares or not.

i. 16
ii. 15
iii. 146
iv. 300
v. 324
vi. 729

### Activity: Identify the following numbers as perfect squares or not.

i. 16 = 4 x 4
ii. 15
iii. 146
iv. 300
v. 324 = 18 x 18
vi. 729 = 27 x 27

### Squares & Square Roots

**Square Root** 

Square Numbers
 One property of a perfect square is that it can be represented by a square array.
 Each small square in the array

4cm

<u>6 cm</u>

4cm

shown has a side length of 1cm.

The large square has a side length of 4 cm.

#### +The large square has an area of 4cm x 4cm = 16 cm<sup>2</sup>.

# +The number 4 is called the square root of 16.





4cm

# Square Root

+A number which, when multiplied by itself, results in another number.

+Ex: 5 is the square root of 25.

**5** = √ **25** 

# Finding Square Roots

+We can use the following strategy to find a square root of a large number.

 $\sqrt{4 \times 9} = 4 \times \sqrt{9}$  $\sqrt{36} = 2 \times 3$ 6 = 6

### Finding Square Roots $\sqrt{4 \times 9} = \sqrt{4}$ 10 = 2 x 3 √ 36 6 6

We can factor large perfect squares into smaller perfect squares to simplify.

# Finding Square Roots

### +Activity: Find the square root of 256

 $\sqrt{256}$ =  $\sqrt{4} \times \sqrt{64}$ = 2  $\times$  8 = 16

### Squares & Square Roots



# $\sqrt{25} = 5$







 $\sqrt{27} = ?$ 

Since 27 is not a perfect square, we have to use another method to calculate it's square root.

+Not all numbers are perfect squares.

 Not every number has an Integer for a square root.

We have to estimate square roots for numbers between perfect squares.

+To calculate the square root of a non-perfect square

1. Place the values of the adjacent perfect squares on a number line.

2. Interpolate between the points to estimate to the nearest tenth.

+Example:  $\sqrt{27}$ 

What are the perfect squares on each side of 27?





+Example:  $\sqrt{27}$ 

### +Estimate: $\sqrt{27} = 5.2$

+Check: (5.2) (5.2) = 27.04

### CLASSWORK

### PAGE 302 - 1,3,6,8,9,11,13 PAGE 303 - 16,17,20,22,23,24,26

# If finished: Complete page 50 to get ready for your test.