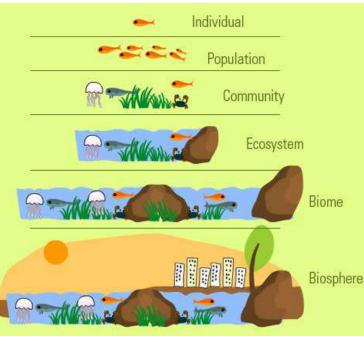
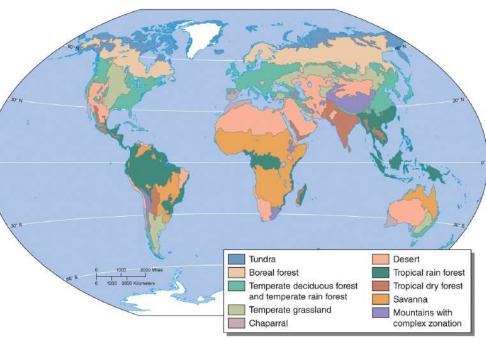
WILEY

Visualizing Environmental Science

Ecosystems and Evolution Chapter 6

rymond Gehman/NG Image Collecti

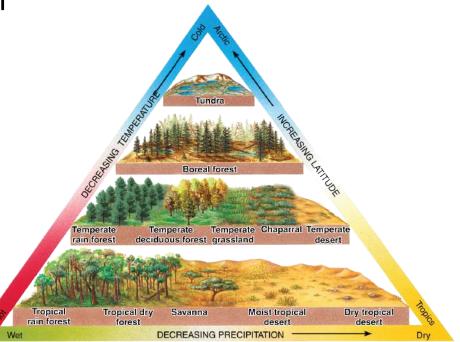

Copyright $\ensuremath{\mathbb{C}}$ 2017 John Wiley & Sons, Inc. All rights reserved.


orld Wildlife Fund

on data from

Factors That Shape Biomes

 Biome—a large, relatively distinct terrestrial region with similar <u>climate</u> (long-term weather pattern), soil, plants, and animals, regardless of where it occurs in the world

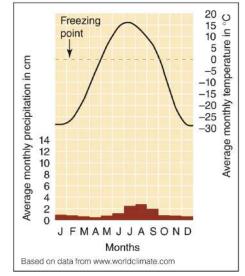


Copyright $\ensuremath{\mathbb{C}}$ 2017 John Wiley & Sons, Inc. All rights reserved.

Factors That Shape Biomes

- <u>Temperature</u> and precipitation have a predominant effect on biome distribution
 - Temperature most important factor near poles
 - Precipitation more important in tropical and temperate regions
- Elevation also affects biomes
 - Vegetation changes with increasing elevation resembles the changes in vegetation from warmer to colder climates

Based on Holdridge, L. Life Zone Ecology. Tropical Science Center, San Jose, Costa Rica (1967).

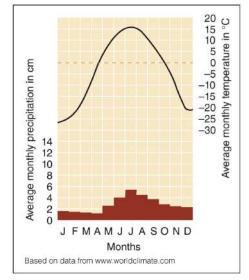

Describing Earth's Major Biomes

- There are nine major terrestrial biomes on earth
 - <u>Tundra</u>
 - Boreal forest
 - Temperate rain forest
 - Temperate deciduous forest
 - Temperate grassland
 - Chaparral
 - <u>Desert</u>
 - Savanna
 - Tropical rain forest

WILEY

Arctic Tundra

- Treeless biome in the far <u>north</u> that consists of boggy plains covered by lichens and mosses
- Harsh, cold winters and extremely short summers and seasonal snow melting
- Low primary productivity and <u>low</u> resilience
- <u>Permafrost</u>—layer of permanently frozen ground
 - Climate change causing permafrost to thaw

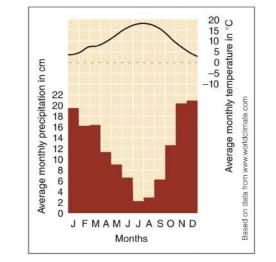

Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

WILEY

Wiley Visualizing

Boreal Forest/Taiga

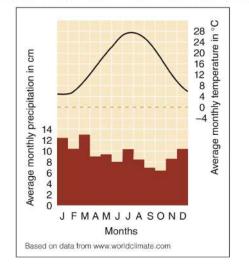
- Coniferous forests of pine, spruce, and fir, in the Northern Hemisphere, just south of tundra
- Winters extremely cold and severe
- <u>Little</u> precipitation, 20 in/year
- Soil is acidic and mineral poor
- Ponds and lakes dug by glaciers
- Caribou, wolves, bear, <u>moose</u>, rodents, rabbits, lynx, birds in summer, lots of insects
- Top source of industrial wood and fiber, leading to <u>loss</u> of forest


RAYMOND GEHMAN/NG Image Collection

Copyright $\ensuremath{\mathbb{C}}$ 2017 John Wiley & Sons, Inc. All rights reserved.

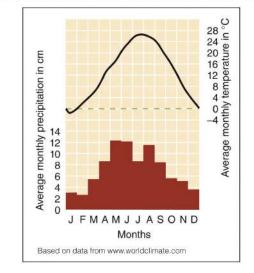
Temperate Rain Forest

- Coniferous forest with <u>high</u> precipitation, dense fog and cool weather
- Northwest coast of North America, SE Australia, South America
- Mild winters, cool summers
- Slow decay, <u>poor</u> soil
- Hemlock, fir, cedar, spruce, epiphytes, mosses, lichens and <u>ferns</u>
- Squirrels, wood rats, elk, mule deer, birds, amphibians and reptiles
- High producer of lumber and pulpwood
 - Overharvesting old-growth forest is an issue



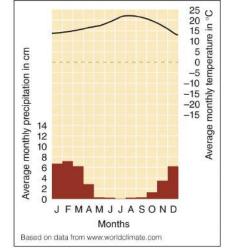
Copyright $\ensuremath{\mathbb{C}}$ 2017 John Wiley & Sons, Inc. All rights reserved.

Temperate Deciduous Forest


- Forest biome that occurs in temperate areas where precipitation ranges from 30–60 in/year
- <u>Hot</u> summers, cold winters
- Topsoil rich in organic matter
- Broad-leaf hardwood trees, lose leaves seasonally
- Originally home to <u>puma</u>, wolves, and bison; now deer, bears, small mammals, birds remain
- Original forests in Europe and North America mostly destroyed by <u>logging</u> and urbanization
- Deciduous forest biomes were the first converted to <u>agricultural</u> use

Temperate Grassland

- Tallgrass prairies and shortgrass prairies
- Hot summers, cold winters, and less rainfall (10 – 30 in/year) than in temperate deciduous <u>forest</u> biome
- Soil rich in organic matter
- More than <u>90%</u> of tallgrass prairies were plowed for agriculture, now North America's <u>rarest</u> biome



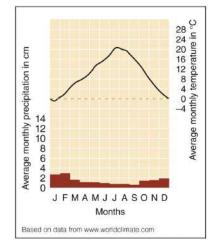
Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

WILEY

Chaparral

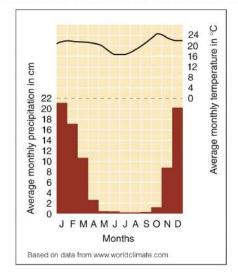
- Mild, moist winters; hot, <u>dry</u> summers
- Small-leaved evergreen shrubs and <u>small</u> trees dominate
- Lush vegetation during rainy winter season
- <u>Wildfires</u> common in late summer and autumn
 - Many fire adapted plants that grow after a fire
- Thin, unfertile soil

Earl Scott/Photo Researchers, Inc.


Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

WILEY

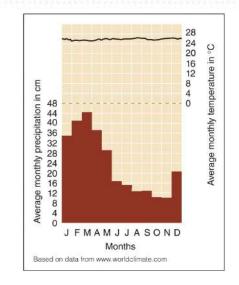
- Plant growth limited by lack of precipitation
- Daily temperature extremes
- Less than <u>10</u> inches of rain/year
- Sparse vegetation that includes cacti, yucca, and sagebrush
- Animals
 - Typically small, mostly nocturnal
 - <u>Insects</u>, arachnids, desert-adapted amphibians, many reptiles
- Threatened by human encroachment and environmental damage from off-road vehicles
 - Soil easily eroded and less vegetation grows to support native animals



Copyright $\ensuremath{\mathbb{C}}$ 2017 John Wiley & Sons, Inc. All rights reserved.

WILEY

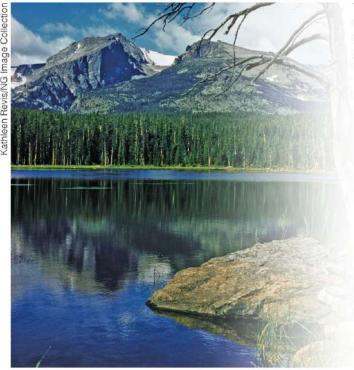
Savanna


- Tropical grassland
- Widely scattered or clumped trees
- Low or intense seasonal rainfall, 34–60 in/year, but with prolonged dry periods
- Low mineral-content soil
- Large herds of herbivores such as wildebeest, antelope, giraffe, zebra, elephant
- Large carnivores such as <u>lions</u> and hyenas
- Savanna is lost as it is converted into rangeland for <u>cattle</u>
- Africa, North Australia, South America, West India

Tropical Rain Forest

- Lush, species-rich forest that occurs where the climate is warm and moist <u>year-round</u>
- Rains almost <u>daily</u>, 80–180 in/year
- Weathered, mineral-poor soil
- High species richness and diversity
 - Most species live in the <u>canopy</u>
- High rate of decomposition
- In tropical dry forests precipitation is lower and more seasonal
- Industrial expansion and human population growth <u>threaten</u> the rain forests

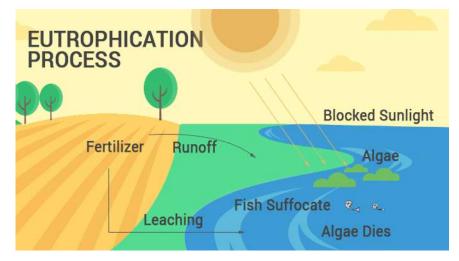
Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.


Aquatic Ecosystems

- Aquatic ecology
 - Freshwater or <u>saltwater</u>
 - Salinity, light availability, nutrient concentration, and dissolved <u>oxygen</u> all affect location and type of species present in a body of water
 - Aquatic ecosystems contain three main categories of organisms
 - <u>Plankton</u>—phytoplankton and zooplankton
 - Microscopic, free floating
 - Nekton—fish and turtles
 - Larger, swimming organisms
 - Benthos—sponges, oysters, worms, <u>crabs</u>, etc.
 - Bottom dwelling organisms, either fixed, burrowing, or walk on bottom

WILEY

Freshwater Ecosystems


- Freshwater ecosystems include
 - Standing-water
 (<u>lakes</u> and ponds)
 - Flowing-water (rivers and streams)
 - <u>Wetlands</u> (marshes and swamps)
- Occupy <u>2%</u> of earth's surface, yet play important role in hydrologic cycle

The zonation in Bear Lake, in Rocky Mountain National Park, Colorado, is not apparent to a visitor.

Freshwater Ecosystems

- Standing water ecosystem
 - A body of fresh water surrounded by land and whose water does not <u>flow</u>; a lake or a pond.
 - Human effects include unintended <u>eutrophication</u> unnatural nutrient enrichment which can significantly affect the ecological balance of the body of water

Copyright $\ensuremath{\mathbb{C}}$ 2017 John Wiley & Sons, Inc. All rights reserved.

WILEY

Freshwater Ecosystems

- Flowing water ecosystem
 - A freshwater ecosystem such as a river or stream in which water <u>flows</u> in a current
 - Highly variable, as the surrounding environment changes between the river's source and mouth
 - Shading by trees in some areas, sunlight in others
 - Groundwater infiltrate changes water temperatures locally
 - Types of organisms present depend on <u>strength</u> of current
 - Adverse human impacts include pollution and dam construction
 Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

Freshwater Ecosystems

- Freshwater wetlands
 - Lands that <u>shallow</u> fresh water covers for at least part of the year; wetlands have a characteristic soil and water-tolerant vegetation
 - Marshes: dominated by grass-like plants
 - <u>Swamps</u>: dominated by woody trees or shrubs
 - Waterlogged soils
 - Anaerobic, low rate of decomposition
 - Rich in organic material
 - Productive <u>plant</u> communities

Freshwater Ecosystems

- Freshwater wetlands provide important environmental functions known as <u>ecosystem services</u>
 - Ecosystem services include:
 - •Providing wildlife <u>habitat</u>
 - •Flood mitigation
 - Serving as groundwater recharge areas
 - •Trapping <u>pollutants</u> from floodwaters
 - Wetlands are threatened by pollution, <u>development</u> and agriculture

Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

WILEY

Estuaries

- Estuary
 - Coastal body of water, partly surrounded by land, with access to both the <u>ocean</u> and fresh water from a river
- Salt marshes—shallow <u>wetlands</u> with salttolerant grasses in temperate areas
- <u>Mangrove</u> forests—tropical equivalent of salt marshes
 - Provide extensive habitat/breeding grounds for fish, shellfish and birds
 - Prevent coastal erosion

WILEY

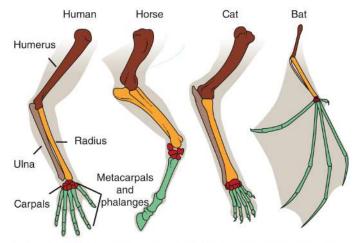
Population Responses to Changing Conditions Over Time: Evolution

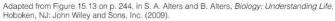
- <u>Evolution</u>—the cumulative genetic changes in populations that occur during successive generations
- <u>Charles Darwin</u> proposed the <u>mechanism</u> of evolution (i.e., not idea of evolution)
- Environment plays crucial role in which traits are inherited
 - Accumulation of favorable <u>traits</u> leads to increased survival

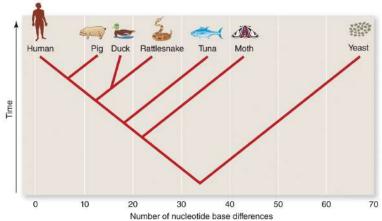
Natural Selection

• Natural selection

- The tendency of better-adapted individuals—those with a combination of genetic traits best suited to environmental conditions—to <u>survive</u> and reproduce, increasing their proportion in the population
- Evolution occurs through the process of natural selection
 - As favorable traits increase in frequency in successive generations, and as unfavorable traits <u>decrease</u> or disappear, the collection of characteristics of a given population changes


Natural Selection


- Four naturally occurring phenomena guide <u>natural selection</u> (NS)
 - High reproductive capacity
 - <u>Limits</u> on population growth
 - Heritable variation
 - Differential reproductive success
- Mutations provide genetic variation
 - Mutations may be beneficial, harmful, or have no effect
 - Beneficial mutations will convey a survival advantage to those that possess them



Environmental InSight Evidence for Evolution

- Comparative anatomy
 - Similarities among organisms demonstrate how they are <u>related</u>
- Molecular biology
 - Showing relationships on a molecular level such as sharing an <u>enzyme</u> or nucleotide base

Adapted from figure 15 19 on p. 247 in S.A. Alters and B. Alters Biology: Understanding Life. Copyright 2006. This material is reproduced with permission of John Wiley & Sons, Inc.

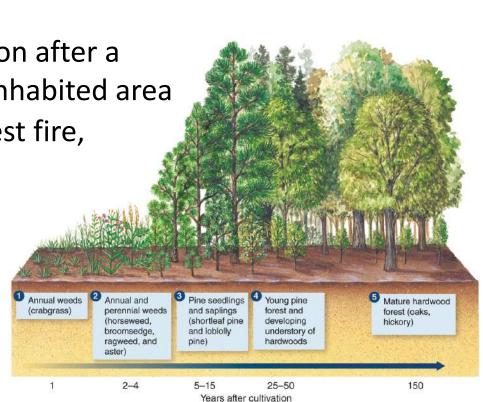
Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

Community Responses to Changing Conditions Over Time: Succession

- Ecological succession
 - The process of community development over time, which involves species in one stage being <u>replaced</u> by different species
- Resident species modify the environment, making it more <u>suitable</u> for later species
- Former concept of a stable 'climax community' has been replaced with understanding that communities continue to <u>change</u> over time
- Succession is described by the changes in <u>plant</u> species in a given area over tens, hundreds, or thousands of years
- Two types of succession: Primary and secondary

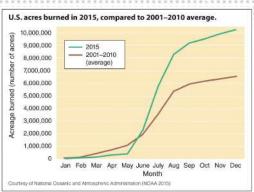
Primary Succession

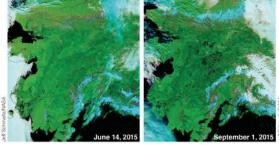
<u>Primary</u> succession


- The change in species composition over time in a previously <u>uninhabited</u> environment
 - Begins with bare <u>rock</u> surfaces
 - Colonization with lichens first occurs, forming a pioneer community
 - Rock breakdown begins soil formation
 - Lichens→mosses→shrubs→eventually specific trees

Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.

Secondary Succession


- <u>Secondary</u> Succession
 - —Change in species composition after a <u>disturbance</u> in a previously inhabited area
 - Abandoned farmland, forest fire, clear-cut forest
- Soil already present
- Can take more than 100 years for secondary succession to occur



• Typically crabgrass→horseweed→<u>pine trees</u>→hardwood trees

Case Study: Wildfires

- Any <u>unexpected</u> fire that burns in grass, shrub, and forest areas
- Has ecosystem impact
 - Frees <u>nutrients</u> from dry organic matter
 - Removes plant cover and stimulates seed germination
 - Increases soil erosion
- Fires part of natural environment
 - Many fire-adapted plants rely on fire for successful reproduction
- Human fire prevention over the years has made wildfire destruction <u>worse</u>
 - Allows debris to accumulate, makes fires hotter, more destructive
 - <u>Prescribed</u> burning is a management tool now used that reduces organic debris and decreases fire severity

