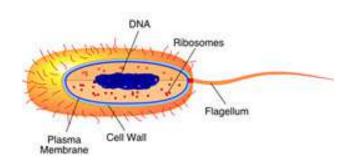
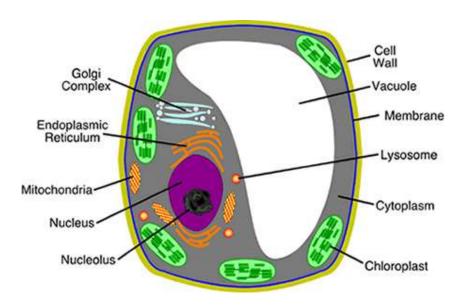
BIOLOGY END OF COURSE TEST STUDY GUIDE

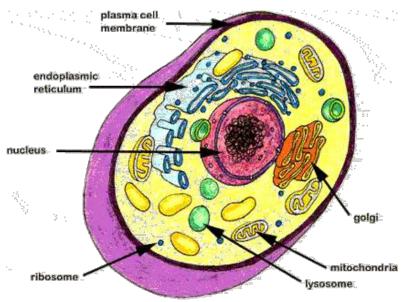
Content Domain 1: Cells

The _____ is the basic unit of structure and function in all living organisms.


BIOLOGY END OF COURSE TEST STUDY GUIDE

Content Domain 1: Cells


The <u>cell</u> is the basic unit of structure and function in all living organisms.


Eukaryotic cell - Animal Cell

Prokaryotic cell-Bacteria

Eukaryotic cell- Plant cell

Also Eukaryotic:

Protists and Fungi

	ell has a nucleus and membrane bound organell to be	es, it is
•	If a cell does not have a nucleus or membrane organelles, it is said to be	bound
	Both types of cells have DNA and ribosomes.	
•	There are only 2 kingdoms whose members coprokaryotic cells. They are	ntain
	and	
Orgar	nisms with prokaryotic cells are all	celled
organ	nisms where as eukaryotes can be either	
celled	d orcelled organisms.	

		ucleus and mer	nbrane bound	l organelles, i
s said	d to be	<u>eukaryotic</u>		· · · · · · · · · · · · · · · · · · ·
•	If a cell of	does not have a	nucleus or or	ganelles, it is
	said to b	e		
	pi	okaryotic		•
•	There ar	e only 2 kingdo	ms whose me	mbers
	contain	prokaryotic cell	s. They are	
	Euba	cteria	and	
	Archa	ebacteria		
			_	
Orgar	nisms wit	h prokaryotic ce	ells are all on	e
_		ns where as eul		
one	J	led or <i>many</i>	•	
				2.0911101

Which of the following are characteristics of	of living
things? (Circle correct characteristics)	

Reproduction Gas exchange
Growth Take in energy
Assimilation of materials Respond to stimuli
Definite shape Movement

The ______ is the outer boundary of the cell and it controls what enters and leaves the cell.

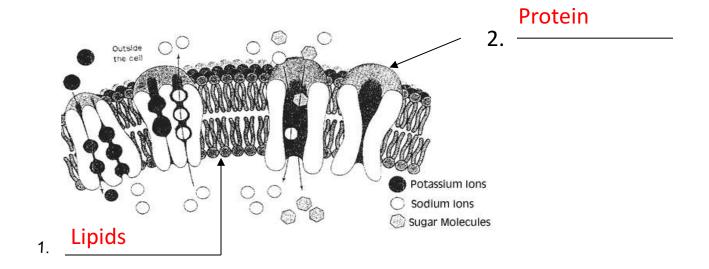
Which of the following are characteristics of living things? (Circle correct characteristics)

<u>Reproduction</u> Gas exchange


<u>growth</u> <u>Take in energy</u>

assimilation of materials respond to stimuli

Definite shape <u>movement</u>


The <u>cell membrane</u> is the outer boundary of the cell and it controls what enters and leaves the cell.

Label the following structures in the cell (plasma) membrane below:

The parts inside of a cell which perform a specific function for the cell are known as .

Label the following structures in the cell (plasma) membrane below:

The parts inside of a cell which perform a specific function for the cell are known as Organelles.

Fill out the table below on the Cell Parts. Cell Part Function Energy center or "powerhouse" of the cell. Turns food energy into useable chemical energy (ATP). This is the site for Cellular Respiration. Site for making proteins Processes, packages and secretes proteins (cell's post office) Contains digestive enzymes, breaks things down Transport, "intracellular highway" Stores water or other substances (Plants- 1 large one; Animals-several small ones. Uses sunlight to create food, site of photosynthesis (only found in algae and plant cells)

Provides additional support (plant, fungi, and bacteria cells)

the "control center" of the cell, contains the cell's DNA (chromosomes)

Jelly-like fluid interior of the cell

Fill out the table below on the Cell Parts.

Make protein

ribosomes

lysosomes

vacuole

Cell wall

cytoplasm

nucleus

chloroplasts

Golgi apparatus

Endoplasmic reticulum

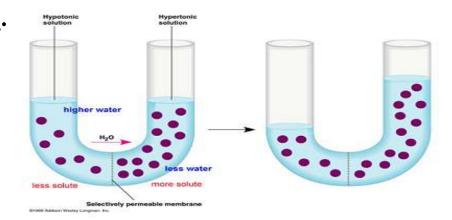
Cell Part	Function	
mitochondria	Energy center or "powerhouse" of the cell. Turns food into useable energy (ATP). This is the site for Cellular Respiration.	

Contains digestive enzymes, breaks things down

Transport, "intracellular highway"

Jelly-like fluid interior of the cell

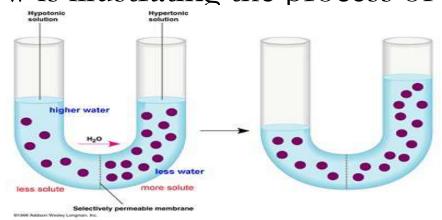
Processes, packages and secretes proteins (cell's post office)


Provides additional support (plant, fungi, and bacteria cells)

Stores water or other substances (Plants- 1 large one Animals-several small ones.

Uses sunlight to create food, site of photosynthesis (only found in plant cells)

the "control center" of the cell, contains the cell's DNA (chromosomes)

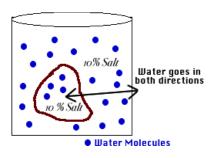

Living things mainta	ain a balance between materials entering
and exiting the cell.	Their ability to maintain this balance is
called	(You can also apply this
term to the whole o	rganism when discussing maintenance
and regulation of bo	ody temperature, hormone levels,
sweating vs. shivering	ng, etc).
The movement of s	substances across the cell membrane
from an area of high	h concentration to an area of low
concentration is known	own as
The diagram below	is illustrating the process of

Living things maintain a balance between materials entering and exiting the cell. Their ability to maintain this balance is called <u>homeostasis</u>. (You can also apply this term to the whole organism when discussing maintenance and regulation of body temperature, hormone levels, sweating vs. shivering, etc...).

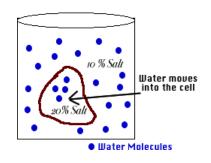
The movement of substances across the cell membrane from an area of high concentration to an area of low concentration is known as <u>passive transport (diffusion)</u>. The diagram below is illustrating the process of osmosis (if

water is moving).

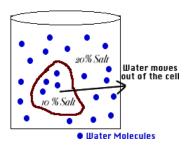
The following diagrams represent different solutions that can affect the rate of osmosis.


Label the solutions as being either hypotonic, hypertonic, or isotonic to the cells in the solutions.

This solution isto the cell.	This solution isto the cell.	This solution isto the cell.
Water goes in both directions	10 % Salt Water moves into the cell	20% Salt Water moves out of the cell 10 % Salt


The following diagrams represent different solutions that can affect the rate of osmosis.

Label the solutions as being either hypotonic, hypertonic, or isotonic to the cells in the solutions.


This solution is __<u>lsotonic___</u>
to the cell.

This solution is <u>hypotonic</u> to the cell.

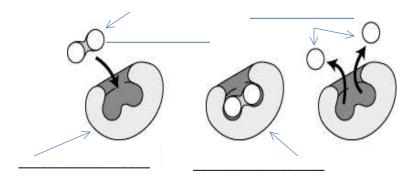
This solution is _hypertonic____ to the cell.

The contractile vacuole inside of some protists like the paramecium below maintains osmotic balance (amount of water inside the cell) by pumping out excess
______ is the type of

______ is the type of membrane transport which requires energy.

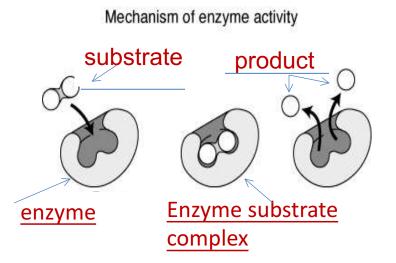
Bulk transport into the cell is known as ______, and bulk transport out of the cell is known as ______.

The contractile vacuole inside of some protists like the paramecium below maintains osmotic balance (amount of water inside the cell) by pumping out excess _water__.


Active transport is the type of membrane transport which requires energy.

Bulk transport into the cell is known as endocytosis, and bulk transport out of the cell

is known as exocytosis.


are sp	pecial proteins that speed up the rate of
chemical reactions, by	y lowering activation energy (energy
required to start a rea	ction).
The	_ is the substance an enzyme acts upon.
The enzyme and subs	strate fit together like a
	This interlocking "fit"
makes enzymes act or	nly on specific substrates.
Label the diagram bel	low with the following terms:
Enzyme/substrate co	omplex, substrate, enzyme, product

Mechanism of enzyme activity

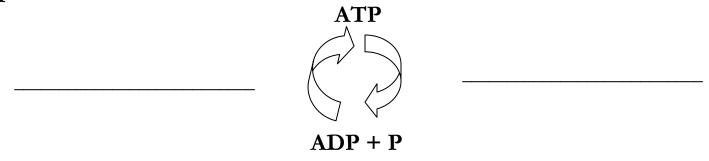
Enzymes are special proteins that speed up the rate of chemical reactions, by lowering activation energy (energy required to start a reaction).

The <u>substrate</u> is the substance an enzyme acts upon. The enzyme and substrate fit together like a <u>lock and key</u>. This interlocking "fit" makes enzymes act only on specific substrates. Label the diagram below with the following terms: Enzyme/substrate complex, substrate, enzyme, product

If it ends in –ase, is probably an	, and if a
word ends in –ose it is a	. •
The area in which a substrate molecule fits into	an enzyme is
known as thesite.	
Fill in the table on the 4 major biomolecules:	

Biomolecule	Monomer	Function
1. Carbohydrate		
2.	Glycerol and fatty acids	
3.		Some are important structural components of living things- some serve as enzymes .
4. Nucleic acids		

If it ends in —ase, is probably an <u>enzyme</u>, and if a word ends in —ose it is a <u>sugar</u>.


The area in which a substrate molecule fits into an enzyme is known as the active site.

Fill in the table on the 4 major biomolecules:

Biomolecule	Monomer	Function
1. Carbohydrate	Monosaccharides (simple sugars)	Provide building materials and energy
2. <u>Lipid</u>	Glycerol and fatty acids	Store energy
3. <u>Protein</u>	Amino acids	Some are important structural components of living things- some serve as enzymes .
4. Nucleic acids	Nucleotides	Contains and translates the genetic code

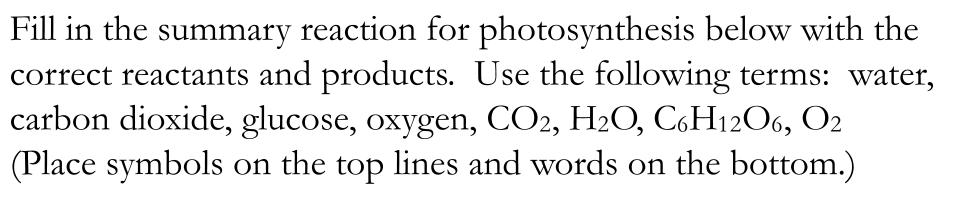
Content Domain 2: Organisms

ATP-Adenosine Triphosphate is a special molecule that stores and releases the energy in its bonds when the cell needs it. Below is a diagram showing the ATP-ADP cycle. On the lines beside the diagram write either energy released for chemical reactions or energy supplied through cellular respiration.

The process in which plants utilize sunlight energy into chemical energy in the form of glucose is called ______.

The process above takes place in the ______ of the plant cell.

Content Domain 2: Organisms


ATP-Adenosine Triphosphate is a special molecule that stores and releases the energy in its bonds when the cell needs it. Below is a diagram showing the ATP-ADP cycle. On the lines beside the diagram write either energy released for chemical reactions or energy supplied through cellular respiration.

<u>energy supplied</u> through cellular resspiration_

Energy released for chemical reactions

The process in which plants utilize sunlight energy into chemical energy in the form of glucose is called <u>photosynthesis</u>. The process above takes place in the <u>chloroplasts</u> of the plant cell.

+	sunlight	 +	

The process by which organisms break down glucose in order to release the energy in it is known as

This process takes place in the _____ of the cell.

Fill in the summary reaction for photosynthesis below with the correct reactants and products. Use the following terms: water, carbon dioxide, glucose, oxygen, CO₂, H₂O, C₆H₁₂O₆, O₂ (Place symbols on the top lines and words on the bottom.)

The process by which organisms break down glucose in order to release the energy in it is known as <u>cellular</u> respiration.

This process takes place in the mitochondria of the cell.

Fill in the summary reaction for cellular respiration below with the correct reactants and products. Use the following terms: water, carbon dioxide, glucose, oxygen, CO2, H_2O , $C_6H_{12}O_6$, O_2 (Place symbols on the top lines and words on the bottom.)

Fill in the summary reaction for cellular respiration below with the correct reactants and products. Use the following terms: water, carbon dioxide, glucose, oxygen, CO₂, H_2O , $C_6H_{12}O_6$, O_2 (Place symbols on the top lines and words on the bottom.)

$$\frac{\text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2}{\text{glucose} + \text{oxygen}} \xrightarrow{\text{CO}_2} \frac{\text{CO}_2 + \text{H}_2\text{O}}{\text{carbon dioxide and water}}$$

	is the branch of biology
which deals with the	he grouping and naming of organisms.
Carolus Linneaus	developed the two word system to name
organisms known	as
The first word of	a scientific name is the
	name and the second word is
the	name.
There are	taxa (classification categories) in
Linneaus' system.	List them in order from largest to smallest.
1.	
2.	
3.	
4.	
5.	
6.	
7.	

- Taxonomy is the branch of biology which deals with the grouping and naming of organisms.
- Carolus Linneaus developed the two word system to name organisms known as binomial nomenclature.
- The first word of a scientific name is the genus name and the second word is the species name.
- There are <u>seven</u> taxa (classification categories) in Linneaus' system. List them in order from largest to smallest.
 - 1. Kingdom
 - 2. Phylum
 - 3. Class
 - 4. Order
 - 5. Family
 - 6. Genus
 - 7. Species

In the modern day classification system there are ____ kingdoms and ____ domains.

Correctly identify the kingdoms given the descriptions in the table below. Provide an example organism in each kingdom.

In the modern day classification system there are six kingdoms and three domains.

Correctly identify the kingdoms given the descriptions in the table below. Provide an example organism in each kingdom.

Kingdom	Description	Example Organism
	Consumers that stay put. They have eukaryotic cells. They may be unicellular or multicellular. They decompose dead organisms and waste from the environment.	What is the only single celled organism in this group?
	Multicellular eukaryotes that photosynthesize. Have cellulose cell walls.	
	Mainly found in extreme environments. Some of these prokaryotic cells like extremely hot temperatures and areas of high salt content.	
	Multicellular consumers. They do not contain cell walls. Most have the ability to move.	
	Most diverse kingdom of organisms. They may be unicellular or multicellular. They live in moist environments. Some are plant-like, some animal-like, some fungus-like.	
	This group of prokaryotes can be both beneficial and harmful. Some cause diseases while others are used in the food industry and are decomposers.	

Kingdom	Description	Example Organism
Fungi	Consumers that stay put. They have eukaryotic cells. They may be unicellular or multicellular. They decompose dead organisms and waste from the environment.	What is the only single celled organism in this group? Yeast
Plantae	Multicellular eukaryotes that photosynthesize. Have cellulose cell walls.	Apple tree
Archaebacteria	Mainly found in extreme environments. Some of these prokaryotic cells like extremely hot temperatures and areas of high salt content.	Methanogens
Animalia	Multicellular consumers. They do not contain cell walls. Most have the ability to move.	YOU!!
Protista	Most diverse kingdom of organisms. They may be unicellular or multicellular. They live in moist environments. Some are plant-like, some animal-like, some fungus-like.	Protozoa, Algae Slime Mold
Eubacteria	This group of prokaryotes can be both beneficial and harmful. Some cause diseases while others are used in the food industry and are decomposers.	E. coli

Match the animal phylum characteristics with the correct phylun	n name:
Contain no specialized tissue. Have many pores.	A. Platyhelminthes
Bodies with radial symmetry. Stinging cells	B. Chordata
Flat worms. Only one body opening for digestive tract	C. Nematoda
Round worms. First group with 2 body openings	D. Arthropoda
Segmented worms. First group with complete Digestive	E. Porifera
system.	F. Cnidaria
snails, squid, clams, oysters, slugs. Soft-body	G. Annelida
Jointed appendages and exoskeletons.	H. Echinodermata
spiny skin	I. Mollusa
notochord, gill slits, tail	

Match the animal phylum characteristics with the correct phylum name:

- <u>E</u> Contain no specialized tissue. Have many pores.
- <u>F</u> Bodies with radial symmetry. Stinging cells
- A Flat worms. Only one body opening for digestive tract C. Ne
- **_C__** Round worms. First group with 2 body openings D. Arthropoda
- **_G** Segmented worms. First group with complete Digestive E system.
- _____ snails, squid, clams, oysters, slugs. Soft-body
- **D** Jointed appendages and exoskeletons.
- <u>H</u> spiny skin
- <u>B</u> notochord, gill slits, tail

- A. Platyhelminthes
- B. Chordata
- C. Nematoda
- E. Porifera
- F. Cnidaria
- G. Annelida
- H. Echinodermata
- I. Mollusa

Class	Description
	Must return to water to reproduce. Obtain oxygen with gills when young and with lungs and through skin as an adult.
	Have hollow bones and feathers.
	Are jawless fish with skeletons made of cartilage.
	Have skeletons of cartilage. Sharks, skates and rays are examples.
	The first group to produce an amniotic egg. Have tough scaly skin.
	Feed their young milk. Have hair as a body covering

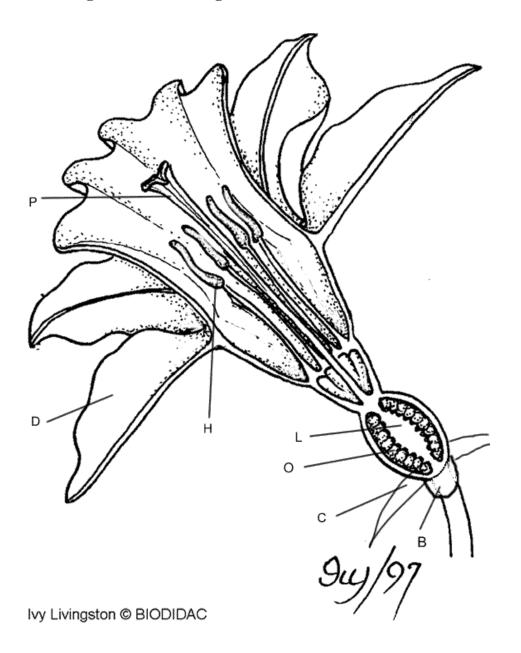
Bony fish.

Osteichthyes

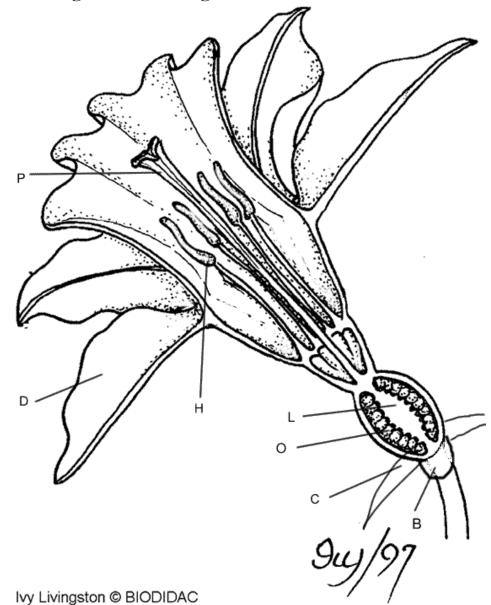
Class

Amphibian	Must return to water to reproduce.	
	Obtain oxygen with gills when young	
	and with lungs and through skin as	
	an adult.	
Aves	Have hollow bones and feathers.	
Agnatha	Are jawless fish with skeletons made of cartilage.	
Chondrichthyes	Have skeletons of cartilage. Sharks, skates and rays are examples.	
Reptile	The first group to produce an	

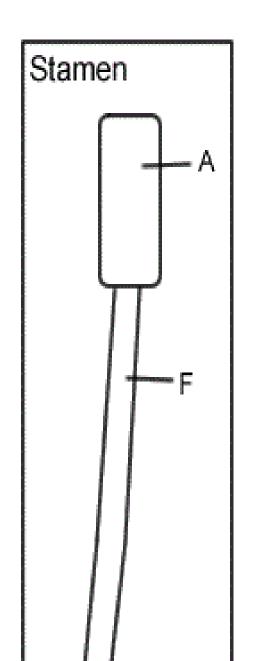
Bony fish.

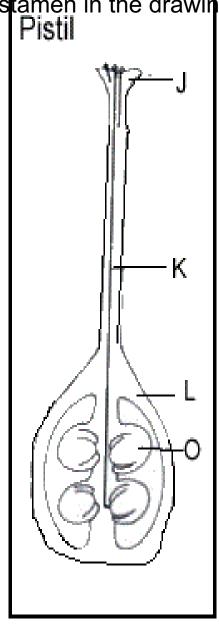

Description

ReptileThe first group to produce an
amniotic egg. Have tough scaly skin.MammalFeed their young milk. Have hair as
a body covering

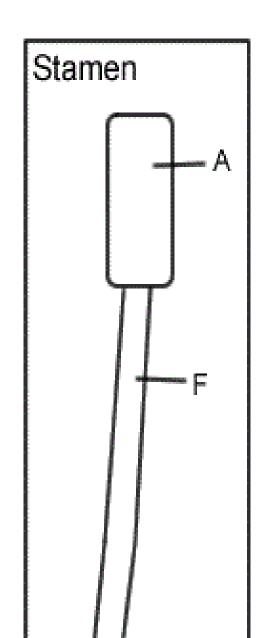

Organism that can maintain a constant body temperature		
regardless of external temperature are known as		
Also known as warm-blooded.		
Organisms whose body temperature is similar to the temperature		
of the environment are known as		
Also known as cold-blooded.		
plants have no vascular tissue, no		
roots, stems, or leaves. Ex. Mosses, hornworts, and liverworts.		
plants have vascular tissue to		
transport food and water.		
Ex. Ferns, grass, trees, bushes, etc		
The type of vascular tissue that conducts water from the roots		
to the leaves is known as+		
The type of vascular tissue that conducts sugar from the leaves		
to the roots is known as		

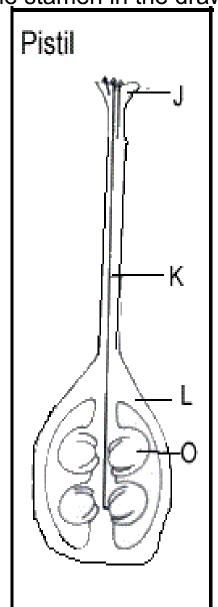
- Organism that can maintain a constant body temperature regardless of external temperature are known as <u>Endothermic.</u> Also known as warm-blooded.
- Organisms whose body temperature is similar to the temperature of the environment are known as *ectothermic*. Also known as cold-blooded.
- **bryophytes** plants have no vascular tissue, no roots, stems, or leaves. Ex. Mosses, hornworts, and liverworts.
- *tracheophytes* plants have vascular tissue to transport food and water.
- Ex. Ferns, grass, trees, bushes, etc....
- The type of vascular tissue that conducts water from the roots to the leaves is known as **xylem**.
- The type of vascular tissue that conducts sugar from the leaves to the roots is known as *phloem*.


Label the flower below using the following terms: Petal, Pistil, stamen, ovary, ovule, sepal, stem



Label the flower below using the following terms: Petal, Pistil, stamen, ovary, ovule, sepal, stem


P- Pistil H-stamen D-petals L-ovary O-ovules C-sepals B-stem Label the 3 parts of the pistil, and the 2 parts of the stamen in the drawings below. Pistil



Label the 3 parts of the pistil, and the 2 parts of the stamen in the drawings below.

A-Anther F-filament

J-stigma K-style L-ovary O-ovule The _____ is a waxy substance that reduces water loss in plants.

openings in the epidermis of a leaf that allows for gas exchange and transpiration.

The <u>cuticle</u> is a waxy substance that reduces water loss in plants. <u>stomata</u> are openings in the epidermis of a leaf that allows for gas exchange and transpiration.

Content Domain III: Genetics.

Chromosomes are made up of the organic molecules called

acids.

There are 2 kinds of nucleic acids and

How do these 2 kinds differ?

- 1.
- 2.
- 3.
- 4.

- Chromosomes are made up of the organic molecules called *nucleic* acids. There are 2 kinds of nucleic acids and **RNA** How do these 2 kinds differ? 1.DNA is double stranded & RNA is single stranded 2. DNA has Thymine & RNA has Uracil 3.DNA has deoxyribose sugar & RNA has
- ribose sugar
 4.DNA has the genetic code & RNA translates the genetic code.

List the four kinds of nitrogenous bases
found in the DNA molecule showing which
bonds to which.

List the four kinds of nitrogenous bases found in the RNA molecule showing which bonds to which.

Name the 3 kinds of RNA

_____, ____, and

Know the function of each.

List the four kinds of nitrogenous bases found in the DNA molecule showing which bonds to which. *Adenine, Thymine, Guanine, & Cytosine*

List the four kinds of nitrogenous bases found in the RNA molecule showing which bonds to which. *Adenine, Uracil, Guanine, &*

Cytosine.Name the 3 kinds of RNA

mRNA ,

tRNA Know the full

<u>rRNA</u>. Know the function of each.

The DNA molecule has the shape of a

The RNA molecule is	_
stranded.	
The process by which DNA makes a copy	of
tself is known as	
and it ta	ıkes
place during	_ of
he cell cycle.	
Where does the above process take place	in
he cell?	

The DNA molecule has the shape of a double helix The RNA molecule is **single** stranded. The process by which DNA makes a copy of itself is known as replication and it takes place during Synthesis of the cell cycle.

Where does the above process take place in the cell?_nucleus_

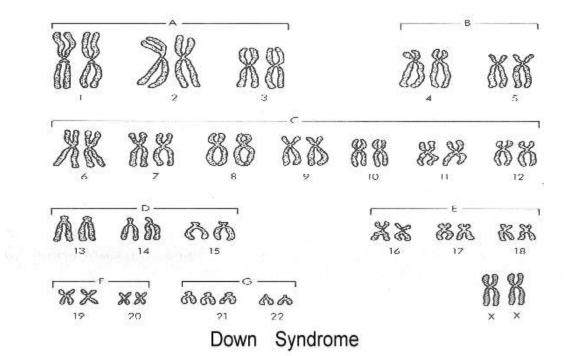
The process of protein syn	thesis occurs in 2 stages.	
	is the first stage and	
must take place in the nuc	leus.	
	is the second	
stage and occurs on riboso	omes in the cytoplasm.	
If the sequence of codons	on an mRNA are	
ACGAACCUUAGG, what would the ones on the DNA		
have		
been?		
What does a codon on the for?	RNA molecule code	
	chromosomes in every body	
	cilioniosomes in every body	
cell. This is known as the		
number and is abbreviated	l by 2N .	

The process of protein synthesis occurs in 2 stages. *transcription* is the first stage and must take place in the nucleus. *Translation* is the second stage and occurs on ribosomes in the cytoplasm.

If the sequence of codons on an mRNA are ACGAACCUUAGG, what would the ones on the DNA have been?___TGCTTGGAATCC_
What does a codon on the RNA molecule code for?___an amino acid_

Humans have ___46_ chromosomes in every body cell. This is known as the <u>diploid</u> number and is abbreviated by **2N**.

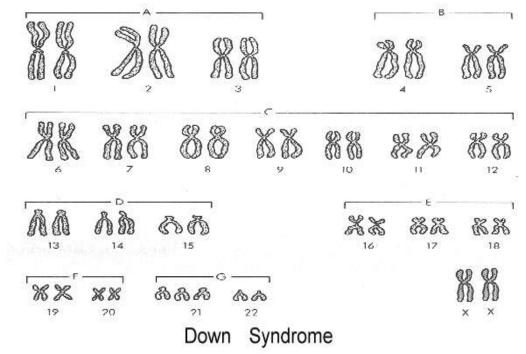
Humans have	chromosomes in their sex	
cells. This is known as t	he	
number and is abbreviate	ed by N .	
Cells divide by the proce	ess of	
	for growth and	
repair.		
List the 4 phases of the above cell division in order.		
1. 2	3.	
4		
During which phase do the	chromosomes line up in the	
middle?		
During which phase do repl	licated chromosomes separate	
from each other?		


- Humans have <u>23</u> chromosomes in their sex cells. This is known as the <u>haploid</u> number and is abbreviated by **N**.
- Cells divide by the process of *mitosis* for growth and repair.
- List the 4 phases of the above cell division in order.
- 1._prophase 2._metaphase_3._anaphase 4._telophase
- During which phase do the chromosomes line up in the middle? __metaphase_
- During which phase do replicated chromosomes separate from each other? <u>anaphase</u>

The division of the cytoplasm of the cell is known as			
cytokinesis. How does this differ between plant and			
animal cells? Animals pinch in and plants form a cell plate			
Another name for sex cells is <u>gamete</u> .			
Meiosis is different from mitosis in that in meiosis			
<u>four</u> daughter cells are formed instead of			
two as in mitosis. Also in meiosis the			
chromosome number is <u>reduced</u> from diploid to			
haploid. What is the diploid number for			
humans?_46			
The male gamete is the _sperm and the female			
gamete is the _egg or ovum			

Chromosomes come in pairs known as

During meiosis, when these pairs don't separate properly, genetic disorders can occur. This failure to separate is known as


The karyotype below illustrates what would happen if this mutation occurred. What type of disorder would this individual have? What is the sex of the individual?

Chromosomes come in pairs known as tetrads.

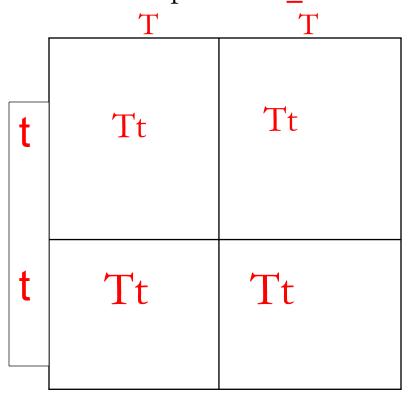
During meiosis, when these pairs don't separate properly, genetic disorders can occur. This failure to separate is known as *nondisjunction*.

The karyotype below illustrates what would happen if this mutation occurred. What type of disorder would this individual have? *Down Syndrome* What is the sex of the individual? *female*

What occurs to the homologous pairs in prophase 1 of meiosis that gives us general variation?	etic
The study of inheritance is known as	
An Austrian monk	
named	is
known as the father of genetics.	
He explained the principles of dominance,	
independent assortment and segregation. Nat	me the
plant he used to make crosses to discover thes	se

principles.____

What occurs to the homologous pairs in prophase 1 of meiosis that gives us genetic variation? crossing


over

The study of inheritance is known as genetics. An Austrian monk named Gregor Mendel___ is known as the father of genetics. He explained the principles of dominance, independent assortment and segregation. Name the plant he used to make crosses to discover these principles._pea plant_

The	square	is us	sed to
determine the o	outcome of a genetic	cro	SS.
Cross a homoz	ygous tall plant with	a sh	ort
plant. Tall is do	ominant. What woul	d th	e
genotype of the	e tall plant be	<u> </u>	What
would the geno	otype of the short pla	ınt	
be?	What would be the phenotype of all offspring?		

The <u>Punnett</u> square is used to determine the outcome of a genetic cross.

Cross a homozygous tall plant with a short plant. Tall is dominant. What would the genotype of the tall plant be ______? What would the genotype of the short plant be______?

What would be the phenotype of all the offspring? Tall Tt

If you cross a red flower and a white
flower all the offspring are pink. This is
an example of

Blood type is an exa	imple of	
codominance	and	
are both dominant a	and	is
recessive.		

If you cross a red flower and a white flower all the offspring are pink. This is an example of *incomplete dominance*.

Blood type is an example of codominance. A and B are both dominant and O is recessive.

Content Domain IV: Ecology

is the branch of biology that studies the interaction of living organisms in their environments. The living things are called _____factors and the non-living factors such as wind, air, water, soil, etc. are the _____ factors. Where an organism lives such as an owl in a tree is its____ and the job the organism has in the environment is its _____. An owl's niche would be that of a . The

Content Domain IV: Ecology

Ecology is the branch of biology that studies the interaction of living organisms in their environments. The living things are called biotic factors and the non-living factors such as wind, air, water, soil, etc. are the abiotic factors. Where an organism lives such as an owl in a tree is its *habitat* and the job the organism has in the environment is its niche. An owl's niche would be that of a *predator*.

mouse an owl eats would be a .This relationship plus what the mouse eats could be shown in a _____. If several food chains intertwine showing many feeding relationships and energy flow you would have a _____. If the flow of energy is shown in a food or energy pyramid, which kinds of organisms normally form the base of the pyramid? (or autotrophs).

mouse an owl eats would be a prey. This relationship plus what the mouse eats could be shown in a *food chain*. If several food chains intertwine showing many feeding relationships and energy flow you would have a food web. If the flow of energy is shown in a food or energy pyramid, which kinds of organisms normally form the base of the pyramid? producers (or autotrophs)

How much energy is available for the			
next level?The total amount of			
living matter produced in an			
environment is called its All of			
the biotic and abiotic factors interacting			
in an area form a(n) An area			
characterized by a dominant climate and			
plant/animal life is known as a			
Plants are the only organisms that			
can convert sunlight into			

How much energy is available for the next level? 10%. The total amount of living matter produced in an environment is called its biomass. All of the biotic and abiotic factors interacting in an area form a(n) ecosystem. An area characterized by a dominant climate and plant/animal life is known as a biome. Plants are the only organisms that can convert sunlight into

chemical energy in the form of			
carbohydrates. Plants are the			
or	and the a	nimals and	
fungi are the	or	The	
process by which plants trap the energy			
from sunlight to make glucose or other			
sugars is known	as	Organisms	
that break down dead organic matter and			
return nutrients to the soil are called			
Sometimes two			

chemical energy in the form of carbohydrates. Plants are the autotroph or producers and the animals and fungi are the *heterotrophs* or *consumers*. The process by which plants trap the energy from sunlight to make glucose or other sugars is known as *photosynthesis*. Organisms that break down dead organic matter and return nutrients to the soil are called *decomposers*. Sometimes two

two organisms live together in a
relationship known as If both
organisms benefit from the relationship
such as in lichens, the relationship is called
, but if one organism is
harmed due to the relationship it is called
All organisms require things
in order to live. When these things are not
available, they cannot reproduce or stay
alive. These factors are called the
factors.

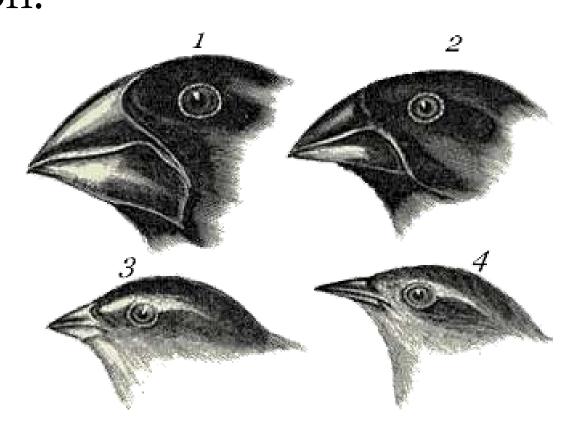
two organisms live together in a relationship known as symbiosis. If both organisms benefit from the relationship such as in lichens, the relationship is called <u>mutualism</u>, but if one organism is harmed due to the relationship it is called __parasitism__. All organisms require things in order to live. When these things are not available, they cannot reproduce or stay alive. These factors are called the <u>limiting</u> factors.

They could include space, food, nutrients, water, etc. When an area has reached the maximum capacity of individuals, it is said to be at _____. The gradual change of an ecosystem or environment to a different kind of environment is known as _____. When it occurs after a fire, hurricane, or other natural disaster it is known as _, but when it occurs where there has never been any life

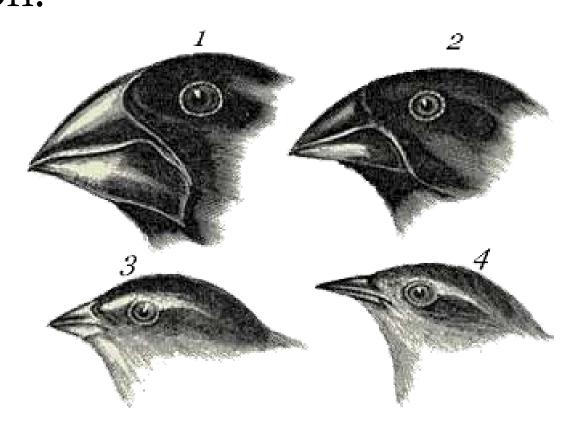
They could include space, food, nutrients, water, etc. When an area has reached the maximum capacity of individuals, it is said to be at ___carrying capacity____. The gradual change of an ecosystem or environment to a different kind of environment is known as __succession____. When it occurs after a fire, hurricane, or other natural disaster it is known as _secondary succession_____, but when it occurs where there has never been any life

life before it is called
The first plants, such as lichens, mosses,
and ferns to live on bare rock or ground
are called The stable
community containing mostly hardwood
trees would be known as the

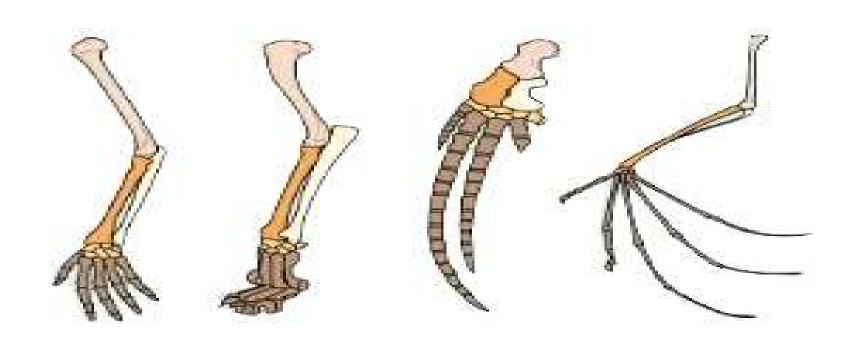
life before it is called ___*primary* succession____. The first plants, such as lichens, mosses, and ferns to live on bare rock or ground are called __pioneer_____plants. The stable community containing mostly hardwood trees would be known as _climax community

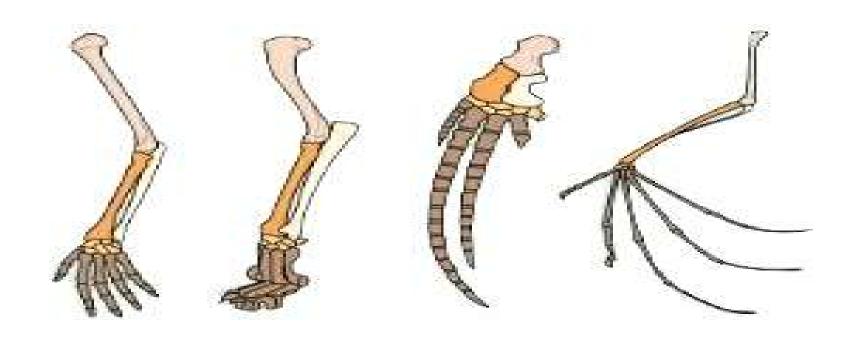

Content Domain V: Evolution was an English naturalist who traveled to the _____ islands making careful notes and descriptions of the organisms there such as tortoises and finches? His theory of _____ stated that organism who were well suited to the environment would survive and pass on their traits to their offspring. Favorable variations within a species that allow them to be well suited to the environment are known as _____

Content Domain V: Evolution


- __Charles Darwin__ was an English naturalist who traveled to the __Galapagos____ islands making careful notes and descriptions of the organisms there such as tortoises and finches?

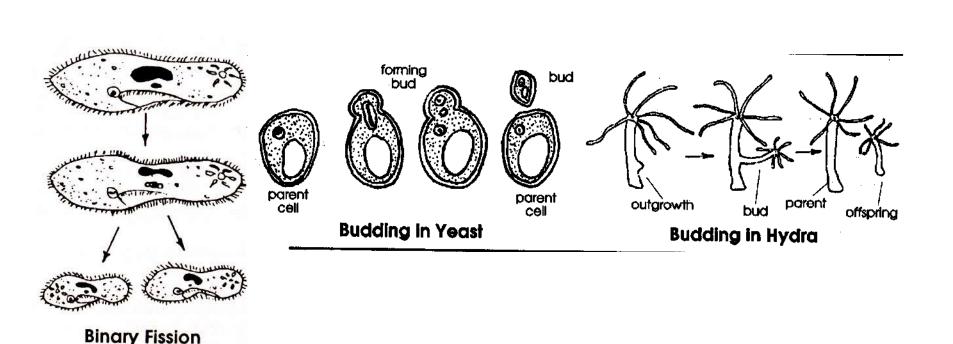
 His theory of ___natural selection___ stated that
- organism who were well suited to the environment would survive and pass on their traits to their offspring.
- Favorable variations within a species that allow them to be well suited to the environment are known as ____adaptations____.


The finches below show similar birds with variations in beaks and eating habits. This could have been a result of _____ radiation.


The finches below show similar birds with variations in beaks and eating habits. This could have been a result of <u>adaptive</u> radiation.

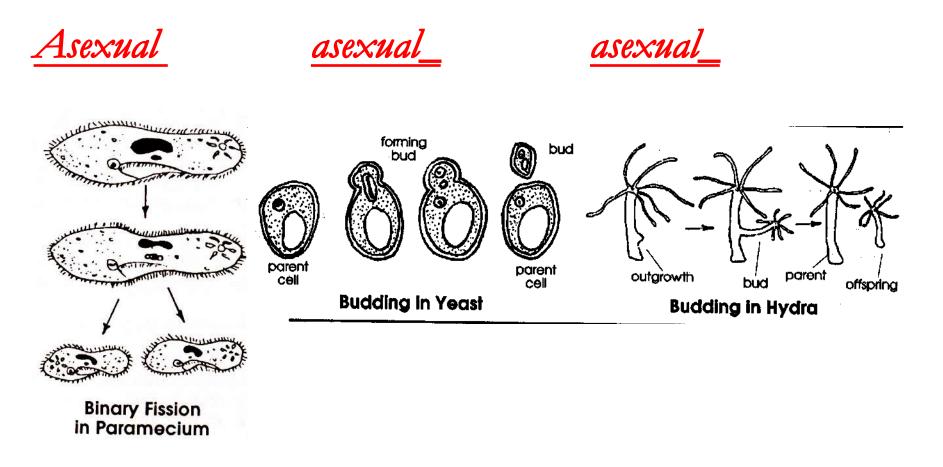
The diagram below shows anatomical evidence for evolution. These structures are known as structures.

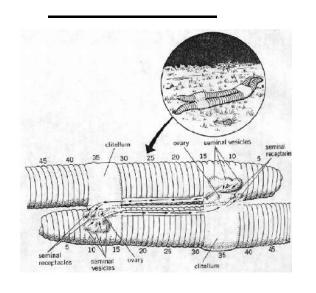
The diagram below shows anatomical evidence for evolution. These structures are known as homologous structures.

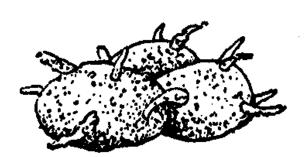

evolution occurs when
wo unrelated species have similar
orm.
Vould breeding race horses be an
example of artificial or natural
selection?
or the traces of organisms that
once lived are also evidence for evolution.

<u>Convergent</u> evolution occurs when two unrelated species have similar form.

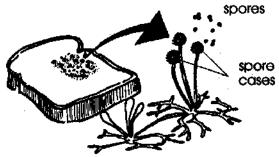
Would breeding race horses be an example of artificial or natural selection? *artificial*

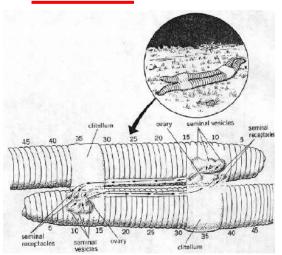

Fossils or the traces of organisms that once lived are also evidence for evolution.


Label the following diagrams as either Sexual or Asexual Reproduction

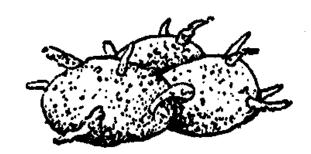


in Paramecium


Label the following diagrams as either Sexual or Asexual Reproduction

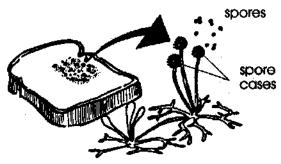


tubers -potato

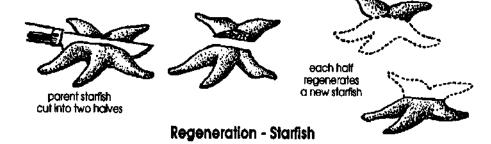


Sporulation - Bread Mold

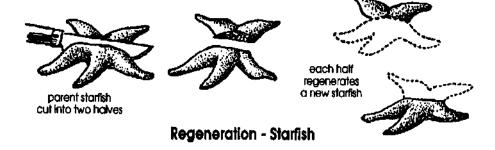
sexual



sexual



tubers -potato


<u>sexual</u>

Sporulation - Bread Mold

asexual_

asexual_