## GSE Algebra I

EOC Review
Units 3 – 6

#### **Unit 3: Quadratic Functions**

#### Key Ideas

Factoring
Vertex and Standard Form
Solving by various methods
Building Functions
Transformations
Characteristics
Analyzing Functions

## **Solving Quadratics**

- Zeros, roots, or x-intercepts are where the graph crosses the x-axis and where the function equals zero.
- Methods:
  - Factoring:  $x^2 7x + 12 = 0$
  - Completing the Square:  $x^2 + 8x + 7 = 0$
  - Taking the Square Root:  $3x^2 147 = 0$
  - Quadratic Formula:  $5x^2 6x 8 = 0$
  - Graphing

## Solving Quadratics

- Standard Form:  $y = ax^2 + bx + c$ 
  - Axis of Symmetry: x = -b/2a
  - Vertex: (-b/2a, f(-b/2a)
- Vertex Form:  $y = a(x h)^2 + k$ 
  - Vertex: (h, k)
- Ex: Write  $f(x) = 2x^2 + 12x + 1$  in vertex form.

## Solving Quadratics

The function h(t) = -t<sup>2</sup> + 8t + 2
represents the height, in feet, of a
stream of water being squirted out of a
fountain after t seconds. What is the
maximum height of the water?

## Creating Quadratic Equations

• What is the value of r when S = 0 for the equation  $S = 2\pi r^2 + 2\pi rh$  for r?

- The product of two consecutive positive integers is 132.
  - Write an equation to model the situation.
  - What are the two consecutive integers?

## **Building Functions**

- Annie is framing a photo with a length of 6 inches and a width of 4 inches. The distance from the edge of the photo to the edge of the frame is x inches. The combined area of the photo and frame is 63 square inches.
  - Write a quadratic function to find the distance from the edge of the photo to the edge of the frame.
  - How wide are the photo and frame together?

#### **Transformations**

- Parent Function the basic function from which all the other functions in a family are modeled.
- $y = a(x h)^2 + k$
- Ex: Compare the graphs of the following functions to f(x).
  - $\frac{1}{2} f(x)$
  - f(x) 5
  - f(x-2) + 1
- Even, Odd, or Neither:  $f(x) = 2x^3 + 6x$

#### Characteristics of Quadratics

- Domain
- Range
- x-intercept, Root, Zero
- y-intercept
- Increasing/Decreasing
- Minimum/Maximum
- End Behavior
- Average ROC

### Characteristics of Quadratics

- A ball is thrown into the air from a height of 4 feet at time t = 0. The function that models this situation is h(t) = -16x<sup>2</sup> + 63t + 4, where t is measured in seconds and h is the height in feet.
  - What is the height of the ball after 2 seconds?
  - When will the ball reach a height of 50 feet?
  - What is the maximum height of the ball?
  - When will the ball hit the ground?
  - What domain makes sense for the function?

## Unit 4: Exponential Functions

**Key Ideas** 

**Creating Equations** 

**Transformations** 

Geometric Sequences

**Characteristics** 

## **Creating Equations**

$$y = ab^x$$
 
$$A = P\left(1 + \frac{r}{n}\right)^{nT}$$

- Ex: An amount of \$1000 is deposited into a bank account that pays 4% interest compounded once a year. If there are no other withdrawals or deposits, what will be the balance of the account after 3 years?
- Ex: The city of Arachna has a spider population that has been doubling every year. If there are 100,000 spiders this year, how many will there be 4 years from now?

## **Building Functions**

$$a_n = a_1(r)^{n-1}$$

- Clara records the number of situps she does over a period of time. Her data for five weeks is 3, 6, 12, 24, 48. Write a sequence to represent her data.
- Growth and Decay
- Ex: The temperature of a large tub of water that is currently at 100 degrees decreases by about 10% each hour.
  - Write an equation to represent the situation.
  - What will the temperature be after 5 hours?

#### **Transformations**

If f(x) = 2x, how will g(x) = 3f(x),
 h(x) = 1/3f(x), and m(x) = -f(x)
 compare?

#### **Function Notation**

- A population of bacteria begins with 2 bacteria on the first day and triples every day.
  - Write a function to represent the situation.
  - What is the common ratio of the function?
  - What is the y-intercept of the function?
  - Write a recursive formula for the bacteria growth.
  - What is the population after 10 days?

#### Characteristics

- The amount accumulated in a bank account over a time period t and based on an initial deposit of \$200 is found using the formula A(t) = 200(1.025)<sup>t</sup>, t≥ 0. Time, t, is represented on the horizontal axis. The accumulated amount, A(t), is represented on the vertical axis.
  - What are the intercepts of the function?
  - What is the domain of the function?
  - Why are all the t-values nonnegative?
  - What is the range of the function?



## Comparing

Two quantities increase at exponential rates. This table shows the value of Quantity A, f(x), after x years.

#### Quantity A

| X    | 0      | 1      | 2      | 3      | 4      |
|------|--------|--------|--------|--------|--------|
| f(x) | 100.00 | 150.00 | 225.00 | 337.50 | 506.25 |

This function represents the value of Quantity B, g(x), after x years.

$$g(x) = 50(2)^x$$

Which quantity will be greater at the end of the fourth year and by how much?

# Unit 5: Comparing and Constrasting Functions

## **Key Ideas**

Construct and Compare Linear,
Quadratic, and Exp Models
Interpret Expressions
Transformations

## Comparing

- Examine function values carefully.
- Remember that a linear function has a constant rate of change.
- Keep in mind that growth rates are modeled with exponential functions.
- Quadratic functions decrease and increase.
- Look for asymptotes, endpoints, or vertex.

## Comparing

This table shows that the value of  $f(x) = 5x^2 + 4$  is greater than the value of  $g(x) = 2^x$  over the interval [0, 8].

| X | f(x)               | g(x)                 |
|---|--------------------|----------------------|
| 0 | $5(0)^2 + 4 = 4$   | 20 = 1               |
| 2 | $5(2)^2 + 4 = 24$  | $2^2 = 4$            |
| 4 | $5(4)^2 + 4 = 84$  | 24 = 16              |
| 6 | $5(6)^2 + 4 = 184$ | 2 <sup>6</sup> = 64  |
| 8 | $5(8)^2 + 4 = 324$ | 2 <sup>8</sup> = 256 |

As x increases, will the value of f(x) always be greater than the value of g(x)? Explain how you know.

## Interpreting

 A parameter is the independent variable or variables in a system of equations with more than one dependent variable.

| Equation                   | Parameter(s)                            |  |  |
|----------------------------|-----------------------------------------|--|--|
| y = 3x + 5                 | coefficient 3, constant 5               |  |  |
| $f(x) = \frac{9}{5}x + 32$ | coefficient $\frac{9}{5}$ , constant 32 |  |  |
| $v(t) = v_0 + at$          | coefficient $a$ , constant $v_0$        |  |  |
| y = mx + b                 | coefficient m, constant b               |  |  |

## Interpreting

- Katherine has heard that you can estimate the outside temperature from the number of times a cricket chirps. It turns out that the warmer it is outside, the more a cricket will chirp. She has these three pieces of information:
  - A cricket chirps 76 times a minute at 56 degrees (76, 56).
  - A cricket chirps 212 times per minute at 90 degrees (212, 90).
  - The relationship is linear.

Estimate the function.

#### **Transformations**

Look at the graphs of the function  $f(x) = x^2 + 1$  and g(x) = x - 1.



What transformation makes  $g(x) \ge f(x)$  only for the interval  $-2 \le x \le 3$ ?

### **Unit 6: Describing Data**

## **Key Ideas**

One Variable Stats
Bivariate Stats
Linear Models

#### One Variable Statistics

- Measures of Central Tendency:
  - Mean
  - Median
- First Quartile
- Third Quartile
- Interquartile Range
- Box Plot
- Histogram
- Outliers
- Mean Absolute Deviation
- Skewness

#### **Bivariate Data**

- Two variable statistics
- Categorical (color, gender, ethnicity) and Quantitative (age, years of schooling, height)
- Bivariate Chart = two-way frequency chart
- Joint Frequencies
- Marginal Frequencies
- Conditional Frequencies
- Scatter Plot
- Line of Best Fit
- Regression
- Correlation Coefficient