What Is Biodiversity? Every day, somewhere on Earth, several unique species of organisms become *extinct* as the last members of the species die—often because of human actions. Scientists are not sure how many species are becoming extinct or even how many species there are on Earth. How much extinction is natural? Can we—or should we—prevent extinctions? The study of biodiversity helps us think about these questions, but does not give us all the answers. ### A World Rich in Biodiversity The term biodiversity, short for "biological diversity," usually refers to the number of different species in a given area. Certain areas of the planet, such as tropical rain forests, contain an extraordinary variety of species. The complex relationships between so many species are hard to study, but humans may need to understand and preserve biodiversity for our own survival. **Unknown Diversity** The study of biodiversity starts with the unfinished task of cataloging all the species that exist on Earth. As shown in Figure 1, the number of species known to science is about 1.7 million, most of which are insects. However, the actual number of species on Earth is unknown. Most scientists agree that we have not studied Earth's species adequately, but they accept an estimate of greater than 10 million for the total number of species. New species are considered known when they are collected and described scientifically. Unknown species exist in remote wildernesses, deep in the oceans, and even in cities. Reading Check What determines whether a species is known or unknown? (See the Appendix for answers to Reading Checks.) #### **Objectives** - ▶ Describe the diversity of species types on Earth, relating the difference between known numbers and estimated numbers. - List and describe three levels of biodiversity. - Explain four ways in which biodiversity is important to ecosystems and humans. - Analyze the potential value of a single species. #### **Key Terms** biodiversity gene keystone species ecotourism Figure 1 ▶ Number of Species on Earth About 1.7 million species on Earth are known to science. Many more species are estimated to exist, especially species of smaller organisms. Scientists continue to revise these estimates. Source: World Conservation Monitoring Center. Figure 2 ▶ Scientists continue to find and describe new species. Specimens may be stored in collections such as this one of tropical birds, with tags that say where and when they were found. Figure 3 ▶ The sea otters of North America are an example of a keystone species, upon which a whole ecosystem depends. **Levels of Diversity** Biodiversity can be studied and described at three levels. Species diversity refers to the number of different species in an area. This kind of diversity has received the most attention and is most often what is meant by biodiversity. Ecosystem diversity refers to the variety of habitats, communities, and ecological processes within and between ecosystems. Genetic diversity refers to all the different genes contained within all members of a population. Agene is a piece of DNA that codes for a specific trait that can be inherited by an organism's offspring. #### **Benefits of Biodiversity** Biodiversity can affect the stability of ecosystems and the sustainability of populations. In addition, there are many ways that humans clearly use and benefit from the variety of life-forms on Earth. Biodiversity may be more important than we realize. **Species Are Connected to Ecosystems** We depend on healthy ecosystems to ensure a healthy biosphere that has balanced cycles of energy and nutrients. Species are part of these cycles. When scientists study any species closely, they find that it plays an important role in an ecosystem. Every species is probably either dependent on or depended upon by at least one other species in ways that are not always obvious. When one species disappears from an ecosystem, a strand in a food web is removed. How many threads can be pulled from the web before it collapses? We often do not know the answer until it is too late. Some species are so clearly critical to the functioning of an ecosystem that they are called keystone species. One example of a keystone species is the sea otter. Figure 3 shows how the loss of sea otter populations led to the loss of the kelp beds along the U.S. Pacific coast and how the recovery of otter populations led to the recovery of the kelp populations. In the 1800s, sea otters were hunted for their fur. They disappeared from the Pacific coast of the U.S. 2 Sea urchins, with no more predators, multiplied and ate all of the kelp. The kelp beds began to disappear from the area. 10 In 1937, a small group of surviving otters was discovered. With protection and scientific efforts, the otter populations grew. The otters once again preyed on the sea urchins. The kelp beds regenerated. Species and Population Survival Genetic diversity within populations is critical to species survival. Genetic diversity increases the chance that some members of a population will survive environmental changes. Small and isolated populations are less likely to survive such changes. When a population shrinks, its genetic diversity decreases as though it is passing through a bottleneck, represented in Figure 4. Even if the population can increase again, its genetic diversity will be reduced. Then, members of the population may become more likely to inherit genetic diseases. Medical, Industrial, and Agricultural Uses People throughout history have used the variety of organisms on Earth for food, clothing, shelter, and medicine. About one quarter of the drugs prescribed in the United States are derived from plants. Almost all antibiotics are derived from chemicals found in fungi. Table 1 lists some plants from which medicines are derived. For some industries, undiscovered and poorly studied species represent a source of potential products. New chemicals and industrial materials may be developed from chemicals discovered in all kinds of species. The scientific community continues to find new uses for biological material and genetic diversity. Reading Check Why is genetic diversity important for the survival of a species? Table 1 ▼ | Common Medicines Derived from Plants | | | | | |--------------------------------------|---------------------------------|--|--|--| | Medicine | Origin | Use | | | | Neostigmine | calabar bean
(Africa) | treatment of glaucoma and basis for synthetic insecticides | | | | Turbocurarine | curare vine
(South America) | surgical muscle relaxant;
treatment of muscle disorders;
and poison for arrow tips | | | | Vincristine,
vinblastine | rosy periwinkle
(Madagascar) | treatment of pediatric leukemia
and Hodgkin's disease | | | | Bromelain | pineapple
(South America) | treatment to control tissue inflammation | | | | Taxol | Pacific yew
(North America) | anticancer agent | | | | Novacaine,
cocaine | coca plant
(South America) | local anesthetic and basis for many other anesthetics | | | | Cortisone | wild yam
(Central America) | hormone used in many drugs | | | | L-dopa
(levodopa) | velvet bean
(tropical Asia) | treatment of Parkinson's disease | | | | Reserpine | Indian snakeroot
(Malaysia) | treatment to reduce high blood pressure | | | Figure 4 ▶ When a population is reduced to a few members, this creates a bottleneck of reduced genetic diversity. The genetic diversity of the population is greater before the bottleneck than after it. **Figure 5** ▶ A produce market in Bolivia shows a diversity of native foods. Food crops that originated in the American tropics include corn, tomatoes, squash, and many types of beans and peppers. #### Table 2 ▼ #### **Origins of Some Foods** #### North America, Central America, and South America corn (maize), tomato, bean (pinto, green, and lima), peanut, potato, sweet potato, avocado, pumpkin, pineapple, cocoa, vanilla, and pepper (green, red, and chile) #### Northeastern Africa. Central Asia, and Near East wheat (several types), sesame, chickpea, fig, lentil, carrot, pea, okra, date, walnut, coffee, cow, goat, pig, and sheep #### India, East Asia, and **Pacific Islands** soybean, rice, banana, coconut, lemon, lime, orange, cucumber, eggplant, turnip, tea, black pepper, and chicken Humans benefit from biodiversity every time they eat. Most of the crops produced around the world originated from a few areas of high biodiversity. Some examples of crop origins are shown in Figure 5 and Table 2. Most new crop varieties are *hybrids*, crops developed by combining genetic material from more than one population. Depending on too few plant varieties for food is risky. For example, famines have resulted when an important crop was wiped out by disease. But some crops have been saved from diseases by being crossbred with wild plant relatives. In the future, new crop varieties may come from species not yet discovered. **Ethics, Aesthetics, and Recreation** Some people believe that we should preserve biodiversity for ethical reasons. They believe that species and ecosystems have a right to exist whether or not they have any other value. To people of some cultures and religions, each organism on Earth is a gift with a higher purpose. People also value biodiversity for aesthetic or personal enjoyment—keeping pets, camping, picking wildflowers, or watching wildlife. Some regions earn the majority of their income from ecotourism, a form of tourism that supports the conservation and sustainable development of ecologically unique areas. #### SECTION 1 Review - 1. **Describe** the general diversity of species on Earth in terms of relative numbers and types of organisms. Compare known numbers to estimates. - 2. **Describe** three levels of biodiversity. Which level is most commonly meant by biodiversity? - 3. **Explain** how biodiversity is important
to ecosystems, and give examples of how it is important to humans. #### **CRITICAL THINKING** - 4. Analyzing a Viewpoint Is it possible to put a price on a single species? Explain your answer. - 5. **Predicting Consequences** What is your favorite type of organism? If this organism were to go extinct, how would you feel? What would you be willing to do to try to save it from extinction? Write a short essay describing your reaction. WRITING SKILLS ## **Biodiversity at Risk** About 65 million years ago, a series of changes in the Earth's climate and ecosystems caused the extinction of about half the species on Earth. The extinction of many species in a relatively short period of time is called a *mass extinction*. Earth has experienced several mass extinctions, as shown in Figure 6. It takes millions of years for biodiversity to rebound after a mass extinction. #### **Current Extinctions** Scientists are warning that we are in the midst of another mass extinction. The rate of extinction is estimated to have increased by a multiple of 50 since 1800. Between 1800 and 2100, up to 25 percent of all species on Earth may have become extinct. The current mass extinction is different from those of the past because humans are the primary cause of the extinctions. **Species Prone to Extinction** Cockroaches and rats are not likely to become extinct because they have large populations that adapt easily to many habitats. But species with small populations in limited areas can easily become extinct. Species that are especially at risk of extinction include those that migrate, those that need large or special habitats, and those that are exploited by humans. An endangered species is a species that is likely to become extinct if protective measures are not taken immediately. A threatened species is a species that has a declining population and that is likely to become endangered if it is not protected. Additional categories of risk exist for certain legal and biological purposes. Reading Check Why do scientists warn that a mass extinction is occurring now? #### **Objectives** - Define and give examples of endangered and threatened species. - Describe several ways that species are being threatened with extinction globally. - Explain which types of threats are having the largest impact on biodiversity. - List areas of the world that have high levels of biodiversity and many threats to species. - ► Compare the amount of biodiversity in the United States to that of the rest of the world. #### **Key Terms** endangered species threatened species exotic species poaching endemic species **Figure 6** ▶ Biodiversity has generally increased over time, as indicated here by the numbers of marine families. The past five mass extinctions were probably caused by global climate changes. Table 3 ▼ | Species Known to Be Threatened or Extinct Worldwide | | | | | |---|--|---------------------------------|---|--| | Type of species | Number threatened (all categories of risk) | Number extinct
(since ~1800) | Percent of species that may be threatened | | | Mammals | 1,130 | 87 | 26 | | | Birds | 1,183 | 131 | 12 | | | Reptiles | 296 | 22 | 3.3 | | | Amphibians | 146 | 5 | 3.1 | | | Fishes | 751 | 92 | 3.7 | | | Insects | 555 | 73 | 0.054 | | | Other crustaceans | 555 | 73 | 1.03 | | | Mollusks and worms | 944 | 303 | 1.3 | | | Plants | 30,827 | 400 | 0.054 | | Source: UN Environment Programme. Figure 7 ▶ The purple area on the map below shows the range of the Florida panther when settlers first arrived in the southeastern United States. Fewer than 100 of this cougar subspecies (right) remain in the wild. #### **How Do Humans Cause Extinctions?** In the past 2 centuries, human population growth has accelerated and so has the rate of extinctions. The numbers of worldwide species known to be threatened, endangered, or recently extinct are listed in Table 3. The major human causes of extinction today are the destruction of habitats, the introduction of nonnative species, pollution, and the overharvesting of species. **Habitat Destruction and Fragmentation** As human populations grow, we use more land to build homes and harvest resources. In the process, we destroy and fragment the habitats of other species. It is estimated that habitat loss causes almost 75 percent of the extinctions now occurring. Due to habitat loss, the Florida panther is one of the most endangered animals in North America. The panther and its historical range are shown in Figure 7. Two hundred years ago, cougarsa species that includes panthers and mountain lions—ranged from Alaska to South America. Cougars require expansive ranges of forest habitat and large amounts of prey. Today, much of the cougars' habitat has been destroyed or broken up by roads, canals, and fences. In 2003, fewer than 100 Florida panthers made up the only remaining wild cougar population east of the Mississippi River. Invasive Exotic Species An exotic species is a species that is not native to a particular region. Even such familiar organisms as cats and rats are considered to be exotic species when they are brought to regions where they never lived before. Exotic species can threaten native species that have no natural defenses against them. The invasive fire ants in Figure 8 threaten livestock, people, and native species throughout the southeastern United States. Harvesting, Hunting, and Poaching Excessive hunting and harvesting of species can also lead to extinction. In the United States in the 1800s and 1900s, 2 billion passenger pigeons were hunted to extinction and the bison was hunted nearly to extinction. Thousands of rare species worldwide are harvested and sold for use as pets, houseplants, wood, food, or herbal medicine. Many countries now have laws to regulate hunting, fishing, harvesting, and trade of wildlife. However, these activities continue illegally, a crime known as **poaching.** In poor countries especially, local species are an obvious source of food, medicine, or income. Moreover, not all threatened species are legally protected. **Pollution** Pesticides, cleaning agents, drugs, and other chemicals used by humans are making their way into food webs around the globe. The long-term effects of chemicals may not be clear until after many years of use. The bald eagle is a well-known example of a species that was endangered because of a pesticide known as DDT. Although DDT is now illegal to use in the United States, it is still manufactured here and used around the world. ### Connection to Ecology Extinction and Global Change Scientists have worried for some time that environmental pollutants might cause drastic changes in our atmosphere and biosphere. However, it is difficult to draw a direct link from global changes to specific extinctions. In recent decades, scientists have observed a worldwide decline in amphibian species. Unlike most cases of habitat loss or overhunting, there are no clear causes for these extinctions. But there is growing evidence to indicate two probable causes: the pollution of water sources with hormone-like chemicals and increased UV radiation exposure due to the thinning of the Earth's ozone layer. Figure 8 ➤ Mounds made by imported fire ants cover many fields in the southeastern United States. As with many invasive exotic species, these ants had no natural predators and little competition from native species when they were first brought into the country by accident. #### **MATHPRACTICE** Estimating Species Loss The annual loss of tropical forest habitat is estimated at about 1.8 percent per year. Some scientists estimate that this habitat loss results in a loss of about 0.5 percent of species per year. Given a low estimate of only 5 million species on Earth, how many years would it take for 1 million species to be lost, if current rates of tropical forest habitat loss continue? #### **Areas of Critical Biodiversity** Some parts of the world contain a greater diversity of species than others. An important feature of such areas is that they have a large portion of endemic species, meaning species that are native to and found only within a limited area. Ecologists often use the numbers of endemic species of plants as an indicator of overall biodiversity, because plants form the basis of ecosystems on land. Ecologists increasingly point out the importance of biodiversity in oceans, though marine ecosystems are also complex and poorly understood. Tropical Rain Forests The remaining tropical rain forests cover less than 7 percent of the Earth's land surface. Yet biologists estimate that over half of the world's species live in these forests. Most of these species have never been described. Unknown numbers of species are disappearing as tropical forests are cleared for farming or cattle grazing. Meanwhile, tropical forests are among the few places where some native people maintain traditional lifestyles and an intimate knowledge of their forest homes. The case study below explains the increasing value of such knowledge in the global marketplace. # A Genetic Gold Rush in the Rain Forests How much is a species worth? To some people, there is money to be made in centers of biodiversity such as rain forests. Thus, the Amazon rain forest in South America is witnessing an increase in visitors—not just tourists, but scientists seeking genes, glory, or enlightenment into the mysteries of these quickly disappearing treasures. To biologists, the prospect of discovering new species may be a chance at fame. The first scientist to collect and describe a species often gets to choose a name for that species. For other scientists, researching the unknown inner workings of the rain forests is an adventure similar to the adventures of explorers charting new lands. But like the quests of early European explorers of the Americas, some reasons to venture into
the wilderness may be economic. The biotechnology industry is based on the application of biological science to create new products such as drugs. This industry depends on Earth's variety of organisms—especially their genetic material—for research and development. In fact, the Brazilian government has taken notice of the increased international interest in the Amazon's amazing biological assets. The government has claimed the right to tax or patent any genetic material harvested from within its borders. Other researchers are more interested in another special feature of the Amazon—native peoples. Some Amazonian natives, such as the Yanomamö, are still living a lifestyle of intimate connection to their forest ➤ This botanist is researching the uses of rain-forest plants and other species with the help of local people. Coral Reefs and Coastal Ecosystems Coral reefs occupy a small fraction of the marine environment yet contain the majority of the biodiversity there. Reefs provide millions of people with food and tourism revenue. They protect coasts from waves and are sources of new chemicals. But reefs are poorly studied and are not well protected by laws. Nearly 60 percent of Earth's coral reefs are threatened by human activities, such as overfishing and pollution. Similar threats affect coastal ecosystems, such as swamps, marshes, shores, and kelp beds. Coastal areas are travel routes for many migrating species as well as links to ecosystems on land. **Islands** When an island rises from the sea, it is colonized by a limited number of species from the mainland. These colonizing species may then evolve into several new species. Thus, islands often hold a very distinct but limited set of species. For example, the Hawaiian Islands have 28 species of an endemic family of birds called honeycreepers. Honeycreepers and many other island species are endangered by competition from exotic species. Reading Check Why is the biodiversity of coral reefs and coastal ecosystems threatened? The World's Largest Reef The Great Barrier Reef of Australia is the largest and probably the oldest reef system in the world. It stretches for 2,000 km (1,250 mi) and consists of 3,400 individual reefs. home, in much the same way as they have for thousands of years. An important value of such native peoples is their vast knowledge of the variety of species in the ecosystems where they live. Their knowledge includes more than just being able to recognize or name species. For example, the Yanomamö make use of thousands of plants, fungi, and animals for food, drugs, weapons, and art. Amazonian natives such as the Yanomamö are probably best known ▶ The Yanomamö are among the few native peoples of the tropical rain forests who still live traditional lifestyles and use their knowledge of the forests to meet all of their needs. for their use of the skin excretions of poison dart frogs for hunting. Often, researchers originally learned of a useful species from a local shaman, or healer. Biochemistry researchers have been amazed by the complex combinations of new chemicals they have discovered in many rain-forest species. Some of these chemicals are already being used in research and medicine. #### **CRITICAL THINKING** 1. Expressing Viewpoints To whom do you think the genetic material of the rain forests should belong? What are some ways this benefit of biodiversity might be shared with the whole world? **Biodiversity Hotspots** The most threatened areas of high species diversity on Earth have been labeled *biodiversity hotspots*. Twenty-five of these areas, shown in **Figure 9**, have been identified by international conservationists. The hotspot label was developed by ecologists in the late 1980s to identify areas that have high numbers of endemic species but that are also threatened by human activities. Most of these hotspots have lost at least 70 percent of their original natural vegetation. The hotspots include mostly tropical rainforests, coastal areas, and islands. In Madagascar, for example, only 18 percent of the original forests remain. More than 80 percent of Madagascar's 10,000 flowering plant species are endemic, as are 91 percent of its 300 reptile species. All 33 species of lemur, which make up a tenth of the world's primate species, are found only in Madagascar. **Biodiversity in the United States** You may notice that three of the biodiversity hotspots in Figure 9 are partly within U.S. borders. The United States includes a wide variety of unique ecosystems, including the Florida Everglades, the California coastal region, Hawaii, the Midwestern prairies, and the forests of the Pacific Northwest. The United States holds unusually high numbers of species of freshwater fishes, mussels, snails, and crayfish. Species diversity in the United States is also high among groups of land plants such as pine trees and sunflowers. Some examples of the many species and populations that are at risk of being lost are shown in Figure 10. The California Floristic Province, a biodiversity hotspot, is home to 3,488 native plant species. Of these species, 2,124 are endemic and 565 are threatened or endangered. The threats to this area include the use of land for agriculture and housing, dam construction, overuse of water, destructive recreation, and mining—all stemming from local human population growth. Figure 10 ► Examples of at-risk species and populations in the United States include • the cecropia moth, (declining populations), 2 the tulip poplar tree (limited distribution), 3 the crayfish Cambarus mongalensis (limited distribution), of the desert pupfish (endangered), and 6 the northern spotted owl (threatened). #### SECTION 2 Review - 1. **Describe** four ways that species are being threatened with extinction globally. - 2. **Define** and give examples of *endangered species* and threatened species. - 3. List areas of the Earth that have high levels of biodiversity and many threats to species. - 4. **Compare** the amount of biodiversity in the United States to that of the rest of the world. #### **CRITICAL THINKING** - **5. Interpreting Graphics** The biodiversity hot spots shown in Figure 9 share several characteristics besides a great number of species. Look at the map, and name as many shared characteristics as you can. - **6. Expressing Opinions** Which of the various threats to biodiversity do you think will be most difficult to stop? Which are hardest to justify? Write a paragraph to explain your opinion. WRITING SKILLS ## The Future of Biodiversity #### **Objectives** - List and describe four types of efforts to save individual species. - Explain the advantages of protecting entire ecosystems rather than individual species. - Describe the main provisions of the Endangered Species Act. - Discuss ways in which efforts to protect endangered species can lead to controversy. - Describe three examples of worldwide cooperative efforts to prevent extinctions. #### **Key Terms** germ plasm Endangered Species Act habitat conservation plan Biodiversity Treaty Slowing the loss of species is possible, but to do so we must develop new approaches to conservation and sensitivity to human needs around the globe. In this section, you will read about efforts to save individual species and to protect entire ecosystems. #### Saving Species One at a Time When a species is clearly on the verge of extinction, concerned people sometimes make extraordinary efforts to save the last few individuals. These people hope that a stable population may be restored someday. **Captive-Breeding Programs** Sometimes, wildlife experts may attempt to restore the population of a species through *captive-breeding* programs. These programs involve breeding species in captivity, with the hope of reintroducing populations to their natural habitats. One example of a captive-breeding program involves the California condor, shown in **Figure 11**. Condors are scavengers. They typically soar over vast areas in search of dead animals to eat. Habitat loss, poaching, and lead poisoning brought the species near extinction. In 1986, the nine remaining wild California condors were captured by wildlife experts to protect the birds and to begin a breeding program. Birds bred in captivity were released into the wild in the hope that they would breed there. By 2005, there were 121 condors in the wild, a few of them juveniles that had hatched from eggs laid in the wild. The survival of this species remains doubtful. Preserving Genetic Material One way to save the essence of a species is by preserving its genetic material. Germ plasm is any form of genetic material, such as that contained within the reproductive, or germ, cells Figure 11 ➤ The California condor (above) nearly became extinct in the 1980s. A captive-breeding program (right) is returning some condors to the wild. of plants and animals. Germ-plasm banks store germ plasm for future use in research or species-recovery efforts. Material may be stored as seeds, sperm, eggs, or pure DNA. Germ plasm is usually stored in special controlled environments, such as that shown in Figure 12, to keep the genetic material intact for many years. Farmers and gardeners also preserve germ plasm when they save and share seeds. **Zoos, Aquariums, Parks, and Gardens** The original idea of zoos was to put exotic animals on display. However, in some cases, zoos now house the few remaining members of a species and are perhaps the species' last hope for survival. Zoos, wildlife parks, aquariums, and botanical gardens are living museums of the world's biodiversity. Botanical gardens, such as the one shown in Figure 13, house about 90,000 species of plants worldwide. Even so, these kinds of facilities rarely have enough resources or knowledge to preserve more than a fraction of the world's rare and threatened species. More Study Needed Ultimately, saving a few individuals does little to preserve a species. Captive species may not reproduce or survive again in the
wild. Also, small populations are vulnerable to infectious diseases and genetic disorders caused by inbreeding. Conservationists hope that these strategies are a last resort to save species. duce organisms many years from now. Figure 13 ► This botanical garden is contained within a clear dome in Oueen Elizabeth Park in Vancouver. Canada. The dome houses over 500 species of plants from all over the world as well as over 100 species of tropical birds. **Figure 14** ▶ Another conservation strategy is to promote more creative and sustainable land uses. This coffee crop is grown in the shade of native tropical trees instead of on cleared land. This practice is restoring habitat for many migrating songbirds. #### **Preserving Habitats and Ecosystems** The most effective way to save species is to protect their habitats. But a species confined to a small area could be wiped out by a single natural disaster. Some species require a large range to find adequate food, find a suitable mate, and rear their young. Therefore, protecting the habitats of endangered and threatened species often means preserving or managing large areas. **Conservation Strategies** Most conservationists now give priority to protecting entire ecosystems rather than individual species. By protecting entire ecosystems, we may be able to save most of the species in an ecosystem instead of only the ones that have been identified as endangered. The public has begun to understand that Earth's biosphere depends on all its connected ecosystems. To protect biodiversity worldwide, conservationists focus on the hotspots described in the previous section. However, they also support additional strategies. One strategy is to identify areas of native habitat that can be preserved, restored, and linked into large networks. Another promising strategy is to promote products that have been harvested with sustainable practices, such as the shade-grown coffee shown in Figure 14. **More Study Needed** Conservationists emphasize the need for more serious study of ecosystems. Only in recent decades has there been research into such basic questions as, How large does a protected preserve have to be to maintain a certain number of species? How much fragmentation can a particular ecosystem tolerate? The answers may be years or decades away, but decisions affecting biodiversity continue to be made based on available information. Reading Check Why does protecting the habitat of threatened and endangered species involve large areas? ### QuickLAB #### Design a Wildlife Preserve #### **Procedure** - 1. Imagine you have enough money and political support to set aside some land in your community to be habitat for local wildlife. Your goal is to decide which areas to preserve. - 2. Find out which species in your area would need this protection the most, where they currently exist, and what their habitat needs are. - 3. Use a **colored pencil** to draw some proposed preserve areas on a copy of a local map. #### **Analysis** 1. Explain why you chose the areas you did. Can you connect or improve any existing areas of habitat? How could you reduce various threats to the species? #### **Legal Protections for Species** Many nations have laws and regulations designed to prevent the extinction of species, and those in the United States are among the strongest. Even so, there is controversy about how to enforce such laws and about how effective they are. **U.S. Laws** In 1973, the U.S. Congress passed the **Endangered Species Act** and has amended it several times since. This law, summarized in **Table 4**, is designed to protect plant and animal species in danger of extinction. Under the first provision, the U.S. Fish and Wildlife Service (USFWS) must compile a list of all endangered and threatened species in the United States. As of 2005, 1,272 species of plants and animals were listed as endangered or threatened. Dozens more are considered for the list each year. The second main provision of the act protects listed species from human harm. Anyone who harms, buys, or sells any part of these species is subject to a fine. The third provision prevents the federal government from carrying out any project that jeopardizes a listed species. Recovery and Habitat Conservation Plans Under the fourth main provision of the Endangered Species Act, the USFWS must prepare a *species recovery plan* for each listed species. These plans often propose to protect or restore habitat for each species. However, attempts to restrict human uses of land can be controversial. Realestate developers may be prohibited from building on their own land because it contains critical habitat for a species. People may lose income when land uses are restricted and may object when their interests are placed below those of another species. Although battles between developers and environmentalists are widely publicized, in most cases compromises are eventually worked out. One form of compromise is a habitat conservation plan—a plan that attempts to protect one or more species across large areas of land through trade-offs or cooperative agreements. The region of California shown in Figure 15 is part of a habitat conservation plan. #### Table 4 ▼ ## Major Provisions of the Endangered Species Act - The U.S. Fish and Wildlife Service (USFWS) must compile a list of all endangered and threatened species. - Endangered and threatened animal species may not be caught or killed. Endangered and threatened plants on federal land may not be uprooted. No part of an endangered and threatened species may be sold or traded. - The federal government may not carry out any project that jeopardizes endangered species. - The U.S. Fish and Wildlife Service must prepare a species recovery plan for each endangered and threatened species. Figure 15 ► This region of San Diego, California, is home to several endangered species. A habitat conservation plan attempts to protect these species by managing a large group of lands in the area. **Figure 16** ▶ Scenes like this one of elephant tusk poaching were common before the worldwide ban on the sale of ivory as part of CITES. #### **MATHPRACTICE** Measuring Risk There are many ways to categorize a species' degree of risk of extinction. The IUCN and the Nature Conservancy have multiple ranks for species of concern, ranging from "presumed extinct" to "secure." According to one study of 20,500 species in the United States, 1,400 of those species were at some risk. Calculate this number of species at risk as a percentage. Use this percentage to estimate how many species may be at risk around the world. ### **International Cooperation** At the global level, the International Union for the Conservation of Nature and Natural Resources (IUCN) facilitates efforts to protect species and habitats. This organization is a collaboration of almost 200 government agencies and over 700 private conservation organizations. The IUCN publishes *Red Lists* of species in danger of extinction around the world. The IUCN also advises governments on ways to manage their natural resources, and works with groups like the World Wildlife Fund to sponsor conservation projects. **International Trade and Poaching** One product of the IUCN has been an international treaty called *CITES* (the Convention on International Trade in Endangered Species). The CITES treaty was the first effective effort to stop the slaughter of African elephants. Elephants were being killed by poachers who would sell the ivory tusks. Efforts during the 1970s and 1980s to limit the sale of ivory did little to stop the poaching. Then in 1989, the members of CITES proposed a worldwide ban on all trade in ivory, hoping to prevent scenes like those in **Figure 16**. Some people worried that making ivory illegal might increase the rate of poaching instead of decrease it. They argued that illegal ivory, like illegal drugs, might sell for a higher price. But after the ban was enacted, the price of ivory dropped, and elephant poaching declined dramatically. **The Biodiversity Treaty** One of the most ambitious efforts to tackle environmental issues on a worldwide scale was the United Nations Conference on Environment and Development, also known as the first *Earth Summit*. More than 100 world leaders and 30,000 other participants met in 1992 in Rio de Janeiro, Brazil. Reading Check Describe one way in which the IUCN helps to protect species and habitats. An important result of the Earth Summit was an international agreement called the Biodiversity Treaty. The treaty's goal is to preserve biodiversity and ensure the sustainable and fair use of genetic resources in all countries. However, the treaty took many years to be adopted into law by the U.S. government. Some political groups objected to the Treaty, especially to the suggestion that economic and trade agreements should take into account any impacts on biodiversity that might result from the agreements. The international community will thus continue to have debates like those that have surrounded the Endangered Species Act in the United States. **Figure 17** ▶ These Greenpeace activists are blocking the path of a Japanese whaling ship. Do you think this is an effective way to protect species? **Private Conservation Efforts** Many private organizations work to protect species worldwide, often more effectively than government agencies. The World Wildlife Fund encourages the sustainable use of resources and supports wildlife protection. The Nature Conservancy has helped purchase millions of hectares of habitat preserves in 29 countries. Conservation International helps identify biodiversity hotspots and develop ecosystem conservation projects in partnership with other organizations and local people. Greenpeace International organizes direct and sometimes confrontational actions, such as the one shown in Figure 17, to counter environmental threats. #### **Balancing Human Needs** Attempts to protect species often come into
conflict with the interests of the world's human inhabitants. Sometimes, an endangered species represents a source of food or income. In other cases, a given species may not seem valuable to those who do not understand the species' role in an ecosystem. Many conservationists feel that an important part of protecting species is making the value of biodiversity understood by more people. # FIELD ACTIVIT #### **Simple Biodiversity** **Assessment** Discover the diversity of weeds and other plants in a small area. Yards, gardens, and vacant lots are good places to conduct such a study. Mark off a 0.5 m² section. Use a field guide to identify every plant species that you can. At least identify how many different kinds of plants there are. You may want to sketch or photograph some of the plants. Then count the number of each kind of plant you identified. Record your results in your **EcoLog**. #### SECTION 3 Review - 1. **Describe** four types of efforts to save individual species. - 2. **Explain** the advantages of protecting entire ecosystems rather than individual species. - 3. **Describe** the main provisions of the Endangered Species Act. - 4. **Give** examples of worldwide cooperative efforts to prevent extinctions. #### **CRITICAL THINKING** - 5. Analyzing Methods Read the headings in this section. Which type of effort to preserve species do you think is most worthwhile? **READING SKILLS** - 6. Comparing Viewpoints Discuss ways in which efforts to protect species can lead to controversy. - 7. Inferring Relationships Why was a complete ban of ivory sales more effective than a limited ban? #### CHAPTER # Highlights #### 1 What Is Biodiversity? #### **Key Terms** biodiversity, 259 gene, 260 keystone species, 260 ecotourism, 262 #### Main Ideas - ▶ Biodiversity usually refers to the number of different species in a given area. - ▶ The study of biodiversity starts with the unfinished task of identifying and cataloging all species on Earth. Although scientists disagree about the probable number of species on Earth, they do agree that we need to study biodiversity more thoroughly. - ▶ Humanity benefits from biodiversity in several ways and perhaps in some unknown ways. #### 2 Biodiversity at Risk endangered species, 263 threatened species, 263 exotic species, 265 poaching, 265 endemic species, 266 - ▶ Many scientists are now concerned that loss of biodiversity is the most challenging environmental issue we face. - ▶ The most common cause of extinction today is the destruction of habitats by humans. Unregulated hunting and the introduction of nonnative species also contribute to extinctions. - ► Certain areas of the world contain a greater diversity of species than other areas. An important feature of such areas is that they have a large portion of endemic species. - ► The United States has a very important role in preserving biodiversity. #### 3 The Future of Biodiversity germ plasm, 270 **Endangered Species Act**, 273 habitat conservation plan, 273 **Biodiversity Treaty,** 275 - ▶ Most major conservation efforts now concentrate on protecting entire ecosystems rather than individual species. - ▶ The Endangered Species Act establishes protections for endangered and threatened species in the United States. The act has generated some controversy and has been amended several times. - ▶ International cooperation has led to increased recognition and protection of biodiversity worldwide. - ▶ The desire to protect biodiversity often conflicts with other human interests. # CHAPTER 1 Review #### **Using Key Terms** Use each of the following terms in a separate sentence. - 1. keystone species - 2. ecotourism For each pair of terms, explain how the meanings of the terms differ. - 3. hunting and poaching - 4. endemic species and exotic species - 5. endangered species and threatened species - 6. gene and germ plasm - 7. CITES and Biodiversity Treaty #### **STUDY TIP** **Use a Map** As you review the chapter, refer to an atlas, to the maps in the Appendix, or to previous chapters about biomes to compare information. Draw your own map or make a list of the locations of some of the interesting species and ecosystems that you learn about. #### **Understanding Key Ideas** - **8.** The term *biodiversity* refers to - **a.** the variety of species on Earth. - **b.** the extinction of the dinosaurs. - **c.** habitat destruction, invasive exotic species, and poaching. - **d.** the fact that 40 percent of prescription drugs come from living things. - **9.** Most of the living species known to science - **a.** are large mammals. - **b.** live in deserts. - **c.** live in the richer countries of the world. - **d.** are insects. - **10.** Some species are so important to the functioning of an ecosystem that they are called - **a.** threatened species. - **b.** keystone species. - c. endangered species. - d. extinct species. - **11.** A mass extinction is - **a.** a rapid increase in biodiversity. - **b.** the introduction of exotic species. - **c.** the extinction of many species in a short period of time. - **d.** a benefit to the environment. - **12.** When sea otters disappeared from the Pacific coast of North America, - **a.** the area became overrun with kelp. - **b.** the number of fish in the kelp beds increased. - **c.** the number of sea urchins in the kelp beds increased. - **d.** the area became overrun with brown seaweed. - **13.** Which of the following statements about the Endangered Species Act is *not* true? - **a.** Parts of an endangered animal, such as feathers or fur, may be traded or sold but only if the animal is not killed. - **b.** A species is considered endangered if it is expected to become extinct in the near future. - **c.** The federal government cannot carry out a project that may jeopardize an endangered plant. - **d.** A recovery plan is prepared for all animals that are listed as endangered. - **14.** Because of efforts by the Convention on International Trade in Endangered Species (CITES), - **a.** the poaching of elephants increased. - **b.** the cost of ivory worldwide increased. - **c.** the international trade of ivory was banned worldwide. - **d.** a captive-breeding program for elephants was established. - **15.** Emphasizing the preservation of entire ecosystems will - **a.** cause the economic needs of farmers to suffer in order to save a single species. - **b.** decrease biodiversity, especially in tropical rain forests, coral reefs, and islands. - **c.** throw the food webs of many ecosystems out of balance. - **d.** save many unknown species from extinction. ### CHAPTER 🥠 Review #### Short Answer - **16.** When was hunting a major cause of extinctions in the United States? - **17.** What are exotic species, and how do they endanger other species? - **18.** Why do biologists favor using an ecosystem approach to preserve biodiversity? - **19.** Describe three ways that preserving biodiversity can come into conflict with human interests. #### Interpreting Graphics The graph below shows the numbers of various types of species that are officially listed as endangered or threatened in the United States and internationally. Use the graph to answer questions 20–23. - **20.** Do these numbers necessarily reflect *all* species that may be in danger? Explain your answer. - **21.** Which types of species might be underrepresented here? - **22.** Compare the United States and world listings. What trends do you see in the types of species listed? - 23. Given this information, which types of species might need further research worldwide? ### **Concept Mapping** **24.** Use the following terms to create a concept map: biodiversity, species, gene, ecosystem, habitat loss, poaching, exotic species, germ plasm, captive breeding programs, and habitat preservation. #### Critical Thinking - **25. Comparing Processes** Read the passage in this chapter that describes current extinctions. How are the extinctions that are occurring currently different from most extinctions in the past? **READING SKILLS** - **26. Analyzing Methods** With unlimited funding, could zoos and captive-breeding programs restore most endangered animal populations? Explain your answers. - 27. Determining Cause and Effect How might the loss of huge tracts of tropical rain forests have an effect on other parts of the world? #### **Cross-Disciplinary Connection** - **28. Literature** Try to remember or find some children's stories that include wild animals that are currently endangered, threatened, or extinct. Write a description of how these animals are portrayed in the stories. Also compare the animals in the stories to what you know about the real animals. WRITING SKILLS - **29. Geography** Obtain a list of the plants and animals that are endangered in your state. Find out where these species live, and mark the locations on a map of your state. Research the effects of habitat loss on species in your county or in surrounding areas. #### Portfolio Project **30. Endangered Species Outreach** Create a special project about one endangered species of your choice. Consider using a poster, an oral presentation, or a video to inform your classmates about your chosen species or to persuade them of the importance of saving the species. #### **MATH SKILLS** Use the table below to answer questions 31–32. - **31. Analyzing Data** Which of the types of species in the table below are most accurately described? What do the numbers indicate about how well various species are studied? - **32. Applying Quantities** Which of the types of species may represent the greatest unknown loss of biodiversity? Which type of species is probably least important for further research into biodiversity? #### **Estimates of Knowledge of Earth's Species** Described Number species Number Accuracy Type of of species as % of threatened species described total or extinct estimates 4,000 0.40 Bacteria (unknown) very poor **Vertebrates** 52,000 94.55 3,843 good Crustaceans 40,000 26.67 628
moderate **Plants** 270,000 84.38 31,277 good #### **WRITING SKILLS** - **33. Writing Persuasively** Write a letter to the editor of a publication or to an elected representative in which you express your opinion regarding protections of endangered species that might affect your local area. - **34. Outlining Topics** Outline the major strategies for protecting biodiversity that have been described in this chapter. List pros and cons of each strategy. #### **READING SKILLS** Read the passage below, and then answer the questions that follow. Excerpt from M. Reaka-Kudla, D. Wilson, and E. Wilson, eds., Biodiversity II, 1996. Aside from the academic tradition of biodiversity, another powerful influence, related to biodiversity, brought our culture to its current level of technological development: the exploration of the New World. From the thirteenth to the nineteenth centuries, technological developments in navigation allowed European voyagers to embark on an unprecedented exploration of the globe. These expeditions revolutionized knowledge of the geography, human culture, and biology of the world at the time. This ultimately led to a reevaluation of human society's place in the world and an understanding of the evolution of all living things. But the exploration also allowed the acquisition of untold wealth in living and nonliving natural resources, which was brought back from the New World and invested in the culture of western Europe. - **1.** What do the authors probably mean by the term *influence*? - **a.** a force of cultural change - **b.** a new type of scientific discovery - **c.** a source of geographic information - **d.** a form of navigation - **2.** Which of the following are not mentioned by the authors as factors in our current level of technological development? - **a.** geographical information - **b.** knowledge of a variety of species - **c.** new forms of government - **d.** evolutionary theory - **3.** Which of the following did the authors most likely discuss in the paragraph just *before* this passage? - a. natural resources of the New World - **b.** religious beliefs of native peoples - **c.** academic tradition of European biology - **d.** history of European expeditions # **10** ## Standardized Test Prep #### **Understanding Concepts** Directions (1-4): For each question, write on a separate sheet of paper the letter of the correct answer. - Which of the following phrases describes the term genetic biodiversity? - **A.** the variety of habitats found in an ecosystem - **B.** the variety of species present in an ecosystem - **C.** the differences between populations of species - **D.** the different genes contained within members of a population - **2** What species are critical to the survival of an ecosystem? - **F.** bottleneck species **H.** exotic species - **G.** endemic species **I.** keystone species - Which of the following describes a species that is likely to become endangered? - **A.** insects that have to adapt to an urban environment - **B.** small mammals that live in urban ecosystems - **C.** birds that can only survive in rural ecosystems - **D.** mammals that need an undeveloped habitat to breed successfully - Why is international cooperation crucial to securing future biodiversity? - **F.** Wildlife protection laws vary from country to country. - **G.** Poaching is the most important reason for a species population decline. - **H.** Habitat destruction and other causes of extinction cross international borders. - **I.** Protecting species sometimes conflicts with the interests of human populations. *Directions (5–6):* For *each* question, write a short response. - Why could private or non-governmental agencies be more effective in protecting species than government agencies? - **6** Compare endangered species with threatened species. #### **Reading Skills** *Directions (7–10):* Read the passage below. Then answer the questions. Scientists are developing new methods of conservation in an attempt to preserve species on the verge of extinction. Captive-breeding programs try to restore the population of a species. Another approach is to preserve germ plasm. Germ plasm is any form of genetic material, such as that contained within the reproductive, or germ, cells of plants or animals. Germ-plasm banks store seeds, sperm, eggs, or pure DNA in special controlled environments. Farmers and gardeners also preserve germ plasm when they save and share seeds. - One way that scientists are trying to preserve species on the verge of extinction is by - **A.** logging tropical rain forests - **B.** developing new methods of conservation - **C.** removing species from the endangered list - **D.** abandoning new methods of conservation - **8** What is the aim of captive-breeding programs? - **F.** to increase the population size of a species to double its former size - **G.** to restore the animal kingdom - **H.** to restore germ plasm - **I.** to restore the population of a species - 9 What is stored at germ-plasm banks? - **A.** seeds, sperm, eggs, or pure DNA - **B.** seeds that are not used by farmers and gardeners - **C.** animals from captive-breeding programs that were not able to survive in the wild - **D.** instructions about how to restore a species when it becomes extinct - 10 Compare the genetic material in germplasm banks with the seeds saved and shared by farmers and gardeners. #### **Interpreting Graphics** Directions (11–14): For each question below, record the correct answer on a separate sheet of paper. The graph below shows the number of families of marine organisms that existed millions of years ago. Use this graph to answer questions 11 and 12. - **11** How has the biodiversity of marine families changed over the last 500 million years? - **F.** It has increased. - **G.** It has decreased slightly. - **H.** It has remained the same. - **I.** It has decreased significantly. - 12 What is the average number of families of marine organisms lost in a major extinction event? - **A.** 25 - **C.** 100 - **B.** 75 - **D.** 150 - If 90 families were lost in an extinction event that lasted 10 million years, and each family contained 200 species, how many species were lost every 100,000 years during that period? - **F.** 90 - **H.** 200 - **G.** 180 - I. 360 - 14 What do we know about the number of individual species currently living on Earth? - **A.** There are no new species being found. - **B.** All the species that exist on Earth have been cataloged. - **C.** About 1.7 million species are known to exist. - **D.** There are more trees and mammals than there are insects. Converting the largest numbers to scientific notation may help you simplify your calculations. # CHAPTER / # 10 ## **Exploration Lab: FIELD ACTIVITY** #### **Objectives** - USING SCIENTIFIC METHODS Observe and measure differences in species diversity between two locations. - USING SCIENTIFIC METHODS Graph and analyze data collected to reflect differences in species diversity. - Evaluate the possible reasons for observed differences in biodiversity. - USING SCIENTIFIC METHODS Infer other human activities that may influence local biodiversity. #### **Materials** graph paper hand lens meterstick or tape measure pen or pencil string or chalk line optional materials: local-area field guides for plants, animals, and soil organisms; shovel or trowel ▶ **Step 2** Measure and mark off sample areas for your observation and counts of species diversity. ### **Differences In Diversity** Biodiversity is most obvious and dramatic in tropical rain forests and coral reefs, but you do not have to travel that far to observe differences in species diversity or to see the effects that humans can have on biodiversity. Recall that biodiversity is most often defined as the number of different species that are present in a given area. This measure can be estimated by making a sample count of species within a representative area. It is often easiest and most effective to collect or observe small organisms, such as insects and soil dwellers, or stationary organisms, such as plants and trees. In this activity, you will investigate the differences in species diversity in two areas that are close to each other, but that are affected differently by humans. You may work in teams or groups. #### **Procedure** - 1. Choose two sites for your analysis. Site 1 should be an area that has been greatly affected by humans, such as your school building and the surrounding sidewalks, parking area, or groomed lawns. Site 2 should be an area within view of site 1 but that is less affected by humans, such as a wooded area or a vacant lot overgrown with weeds. If directed by your teacher, you may choose more than two sites. Also ask your teacher about your sample square size. - **2.** At each site, measure a 5 m × 5 m square area using the meterstick or tape measure. You might use the edge of a building as a side of your square, or you might use trees as the corners. Mark the measurement of the area with string or a chalk line, as shown in the photograph. - **3.** Observe each site carefully, and record a detailed description of each site. Include as many features as possible, such as location, soil condition, ways the area is used, amount of sun or rain exposure, and other factors that might affect the organisms that exist there. - **4.** For each site, create a table like the table below. | Species Counts Per Site | | | | | |--------------------------------|-------------|-------------|--|--| | Species type | Site number | Site number | | | | Animals | DO NIOT | | | | | Plants | DO NOT | | | | | Fungi and other soil organisms | IN THIS | BOOK | | | - **5.** Using your hand lens, find as many different species as possible within the site. Record each new species by placing a slash or tick mark in the column for each different species identified in each general category. You do not need to identify every organism by scientific name, but using field
guides may help you have an idea of what you are finding. You may also make more specific categories (such as birds, insects, grasses, and trees) if you are able. Be careful not to disturb the area unnecessarily. - **6.** Repeat steps 2–5 for each site. If directed by your teacher, compare your data with those of other groups. - 7. After you have made and recorded all of your observations, put away your materials and restore anything you disturbed at the sites. #### **Analysis** - **1. Constructing Graphs** Create a bar graph of the number of species counted at each site. As directed by your teacher, you may combine all species counts into one total per site or graph each category of organisms separately. - 2. Analyzing Results Based on your observations of the organisms found at the sites, which area reflected a higher level of biodiversity? - **3. Interpreting Results** What factors may have contributed to the differences in biodiversity at the sites? #### Conclusions - 4. Drawing Conclusions What can you conclude about the effect of human activities on biodiversity? - **5. Applying Conclusions** What other human activities, besides those you observed directly, could have affected the biodiversity present at your sites? - **6. Evaluating Methods** Do you feel that the method used in this lab was an effective way to identify biodiversity in an area? Why or why not? How could it have been improved? #### Extension 1. Research and Communications If you were able to use local field guides, what can you generalize about the organisms that you were able to identify? Pay attention to aspects such as how easily recognized each organism is, how common it is in your local area, where it is found outside of your area, or what other unique facts are known about the biology or habitat needs of the organism. ▶ **Step 5** Observe and record how many different types of organisms you find within each sample area. #### DR. E. O. WILSON: CHAMPION OF BIODIVERSITY Dr. Edward Osborne Wilson deserves some of the credit for the fact that this book includes a chapter called "Biodiversity." A few decades ago, the word biodiversity was used by few scientists and was found in few dictionaries. Dr. Wilson has helped make the concept and value of biodiversity widely recognized, through his extensive research, publishing, organizing, and social advocacy. Since his early career as a pioneer in the fields of entomology and sociobiology, Dr. Wilson has gained recognition for many additional accomplishments. He has written two Pulitzer Prize-winning nonfiction books, and has received the National Medal of Science and dozens of other scientific awards and honors. Wilson is widely recognized as one of the ▶ Dr. Wilson with one of his favorite subjects—ants. most influential scientists and citizens of our time. #### It All Started with Bugs Even before his scientific career, Wilson developed a fascination with insects and the natural world. He always had high expectations of himself but made the best of circumstances. Although his parents were divorced and his father's government career required frequent moves, Wilson found companionship in the woods of the southern United States or the museums of Washington, D.C. After injuries damaged his vision and hearing, Wilson focused his scientific skills on the smaller forms of life. By the time he earned his master's degree at the University of Alabama at the age of 20, Wilson was well known as a promising *entomologist*—an expert on the insect world. His specialty is the study of ants and their complex social behaviors. So it makes sense that Wilson next went to study at Harvard University, home to the world's largest ant collection. While at Harvard, he earned his Ph.D.. conducted field research around the world, collected more than 100 previously undescribed species, and wrote several books on insect physiology and social organization. He eventually became curator of the Museum of Entomology at Harvard. Clearly, Wilson has a passion for insects. "There is a very special pleasure in looking in a microscope and saying I am the first person to see a species that may be millions of years old," he says. Some of Wilson's research has focused on the social behavior of ants. Among other important scientific findings, Wilson was the first to demonstrate that ant behavior and communication is based mostly on chemical signals. From Insects to Humans In 1971, Wilson published The Insect Societies, which surveyed the evolution of social organization among wasps, ants, bees, and termites. Wilson began to extend his attempts to understand the relationship of biology and social behavior to other animals, including humans. In 1975, Wilson published a controversial book exploring these new ideas, called Sociobiology. Now an accepted branch of science, sociobiology is the study of the biological basis of social behavior in animals. including humans. During Wilson's studies of the behavior of ants and other social insects, he became interested in the insects' role in the ecosystems where he studied them. Some of his research involved camping for months at a time in a remote wilderness such as the Amazon basin, carefully studying the activities of certain species. His writings include amazing tales of watching huge colonies of "driver" ants swarm out over an area, capturing and killing a great many other species in their path. If you have ever played the popular computer game $SimAnt^{TM}$, Dr. Wilson again deserves credit for providing the inspiration. In 1990, Wilson received his second Pulitzer Prize for co-authoring *The Ants*, an enormous encyclopedia of the ant world. In addition to describing 8,800 known species of ants, the book details the great variations among ant species in terms of anatomy, biochemistry, complex social behaviors, and especially their critical role in many ecosystems. Wilson reminds us that ants "are some of the most abundant and diverse of the Earth's 1.4 million species. They're among the little creatures that run the earth. If ants and other small animals were to disappear, the Earth would rot. Fish, reptiles, birds—and humans would crash to extinction." #### Onward to Biodiversity As with many great scientists, each thing Dr. Wilson studies leads him to new questions and new ideas. During his research in remote lands, Wilson spent time reflecting and writing on the nature of ecosystems, the importance of biodiversity, and the role of humans in relation to these. In 1992, he put many of these ideas into another popular book called *The Diversity of Life*. This book combined Wilson's engaging writing style and personal expertise with the latest ecological research. ▶ Dr. Wilson (center) speaks to politicians and the public about the need to conserve our planet's biodiversity. The book showed both how such incredible biodiversity has evolved on the Earth and how this asset is being lost because of current human activities. The book clearly explained for the general public many of the problems and potential solutions regarding biodiversity that we have studied in this chapter. #### **Urgent Work** Despite his fame, Wilson is a softspoken fellow who would prefer to live a quiet life with his research and with his family in their home in the woods of Massachusetts. But the urgent problem of species loss makes Wilson willing to face the public. "Humanity is entering a bottleneck of overpopulation and environmental degradation unique in history. We need to carry every species through the bottleneck . . . Along with culture itself, they will be the most precious gift we can give future generations." In 1986, Wilson served as one of the leaders of the first National Forum on Biodiversity, and then as editor of Biodiversity, the resulting collection of reports. Wilson continues to engage in public and private meetings with scientists and policy makers around the globe, urging them to support conservation efforts based on sound science. Dr. Wilson recently began promoting the need for a global biodiversity survey. This project would involve an international scientific effort on par with the Human Genome Project. Wilson states that "to describe and classify all of the species of the world deserves to be one of the great scientific goals of the new century." #### What Do You Think? Do you find insects interesting? Could you imagine yourself as an entomologist? Do you think that Dr. Wilson made a goal early in his life to be an internationally famous conservationist? What has led him to take on this role?